Project 3. Binding Free Energy Calculations With MM-PB/GBSA

1. Select a protein system (Thrombin was used as an example in class)

Protein Class	PDB Code	-logk _d	Resolution
Neuraminidase	2QWG	8.4	1.8
DHFR	1DHF	7.4	2.3
L-arabinose	1ABE	6.52	1.7
Thrombin			2.06
Human oxresin receptor 1	4ZJ8	~10	2.75

2. Prepare topologies for energy calculations with implicit solvent

- Xleap
- Tleap

3. Run mmpbsa.py to do the calculation

- Input file
- Output files

4. Analyze the MM-PB/GBSA results

- lgb =1
- lgb =2
- Igb =5
- Pb

Do the following comparisons:

- 1) Performance of different solvent models
- 2) Binding affinities of the native ligand and docking hits

Suggestion: copy the command scripts, input files from the 1A5G subdirectories (/home/mmms/project3/1A5G).