Project 2. MD Simulations of a Protein/Ligand System

1. Select a protein system (Thrombin was used as an example in class)

Protein Class	PDB Code	-logk _d	Resolution
Neuraminidase	2QWG	8.4	1.8
DHFR	1DHF	7.4	2.3
L-arabinose	1ABE	6.52	1.7
Thrombin			2.06
Human oxresin receptor 1	4ZJ8	~10	2.75

2. Select top hits from autodock-vina screening

Top 2 and bottom 1

3. Prepare ligand structures and residue topologies

- Add hydrogen with adt
- Generate Gaussian gcrt file with antechamber
- Run G09 to calculate electrostatic potentials (ESP)
- Run Antechamber to assign RESP charges
- An alternative is run antechamber to assign am1-bcc charge
- 4. Prepare topology files for minimization and MD simulations
 - xleap
 - tleap
- 5. Run Minimization and MD simulations using a delicate scheme
 - Minimization with main chain restrained using a set of gradually reduced restraint force constants

- MD simulation with main chain restrained using a set of gradually reduced restraint force constants
- Heat systems up using a set of temperatures
- Equilibrium phase
- Sampling phase
- 6. Analyze MD snapshots
 - Average structure
 - RMSD ~ simulation time plots
 - Quasi-harmonic analysis
 - MD movie

Suggestion: copy the command scripts, input files from the 1A5G subdirectories (/home/mmms/project2/1A5G).