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“Bare” Molecular Mechanics Atomistic Force Fields:
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Why Solvent?

“It cannot be overemphasized that solvation 
changes the solute electronic structure. Dipole 
moments in solution are larger than the 
corresponding dipole moments in the gas phase. 
Indeed, any property that depends on the 
electronic structure will tend to have a different 
expectation value in solution than in the gas 
phase.” -Cramer



• Many reactions take place in solution

• Short-range effects
• Typically concentrated in the first solvation sphere

• Examples: H-bonds, preferential orientation near an ion

• Long-range effects
• Polarization (charge screening) 

Solvent Effects



Hydration has a large effect on the conformations of 

macromolecules

MD simulation, RMSD from native native:



… and on ligand binding

Distribution of complex decoy binding energies:



Two Kinds of Solvatin Models

Models Explicit solvent models Continuum solvation 

models

Features All solvent molecules are 

explicitly represented.

Respresent solvent as a 

continuous medium.

Advantages Detail information is 

provided. Generally more 

accurate.

Simple, inexpensive to 

calculate

Disadvantages Expensive for 

computation

Ignore specific short-range 

effects. Less accurate.



Explicit Solvation

• Each solvent molecule is 

represented with a set of 

atomic interaction centers 

(just as for the solute).

• Most accurate/detailed.

• Computationally expensive.

• Requires averaging over 

solvent coordinates.

• Difficult to obtain relative free 

energies of solute 

conformations.
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Explicit Water Model Examples

(Å) (kj·mol-1) l1(Å) l2(Å) q1(e) q2(e)  

SPC/E 3.166 0.650 1.00 - +0.4238 -0.8476 109.47 -

TIP3P 3.1506 0.6364 0.9572 - +0.4170 -0.8340 104.52

TIP4P 3.15365 0.6480 0.9572 0.15 +0.5200 -1.0400 104.52 52.26

TIP5P 3.1200 0.6694 0.9572 0.70 +0.2410 -0.2410 104.52 109.47

The SPC/E model adds an average polarization 

correction to the potential energy function – better 

density, diffusion constant;

CHARMM version of the TIP3Pmodel places 

Lennard-Jones parameters on the hydrogen atoms. 



Implicit Solvation



• The solvent is represented by a 

continuum described by macroscopic 

parameters such as the dielectric 

constant, density, surface tension, etc. 

• Theoretical framework based on 

solvent PMF.

• Not as accurate, especially for short-

range solute-solvent interactions.

• Reduced dimensionality.

• Relative solvation free energies from 

single point effective potential energy 

calculations.



Implicit Solvent Models

“A continuum model in computational molecular 
sciences can be defined as a model in which a number 
of the degrees of freedom of the constituent particles 
are described in a continuous way, usually by means of 
a distribution function.”  -Tomasi, Mennucci, and Cammi

continuum solvent

=80

=1-4

protein
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From Explicit to Implicit

It is possible to construct an implicit solvent model by 

approximating the medium outside the water-excluded 

volume as a continuum with electrostatic, entropic, and 

viscous properties that match water. 

Implicit SolventAverage DensityExplicit Solvent
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Molecular Mechanics Atomistic Force Fields 

With Solvent Effect Taken Into Account
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Solvation Free Energy Decomposition

• 𝐺𝑠𝑜𝑙𝑣 = 𝐺𝑝𝑜𝑙𝑎𝑟 + 𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟

• 𝐺𝑝𝑜𝑙𝑎𝑟 = 𝐺𝑤𝑐ℎ𝑎𝑟𝑔𝑒 − 𝐺𝑔𝑐ℎ𝑎𝑟𝑔𝑒

• Gnonpolar= 𝐺𝑤𝑑𝑖𝑠𝑎𝑝 −𝐺
𝑔
𝑑𝑖𝑠𝑎𝑝 + 𝐺𝑐𝑎𝑣

includes van der Waals interaction energy, 

entropy, reorganization energy

- +

- +

Gsol

-Gg
charge

-Gg
disap

Gw
charge Gw

disap

Gcav



Self-Consistent Reaction Field
•Solvent: A uniform polarizable medium with a dielectric constant 
•Solute: A molecule in a suitably shaped cavity in the medium

•Solvation free energy:

M


Gsolv = Gcav + Gdisp + Gelec

1. Create a cavity in the medium costs 

energy (destabilization).

2. Dispersion (mainly Van der Waals) interactions between solute 

and solvent lower the energy (stabilization).

3. Polarization between solute and solvent induces charge 

redistribution until self-consistent and lowers the energy 

(stabilization).



Electrostatic Component: Gpolar

• Poisson-Boltzmann solvers (accurate but numerical and 

slow).

• Generalized Born models (faster, can be expressed as 

analytic function).

• Research Trend: improve accuracy and efficiency and 

coverage



Non-Polar Component: Gnonpolar

• Solute surface area models

• Cavity + van der Waals NP models.                      



surface area approaches

Observation: Gsolvation for the saturated hydrocarbons in water is 

linearly related to the solvent accessible surface area

Problems:

• sensitive to i’s, parameterization, surface area and change in 

conformation

• in dynamics you need derivatives of SASA

• what about polarization effects?

Gresidue =   iAi
atoms,i

free energy of 

interaction of a solute 

with water

exposed solvent 

accessible surface area 

(SASA)

atomic solvation parameters 

based on free energies of 

transfer



Example of an analytical NP model
(the “NP” in AGBNP)
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Continuum Dielectric Models 



Approximate continuum dielectric models

1.Dielectric polarization around polar groups

• Favorable interaction between exposed 

charged atoms and the polarized dielectric.

2.Dielectric screening of electrostatic interactions

• The dielectric weakens the interactions 

between charges

• Distance-dependent dielectric models
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The basic idea is that a dielectric model of hydration should describe these two 

basic effects:
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Dielectric Screening
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This is BULK solvent screening.  

At short range, no screening…



Simple Dielectric Screening

Distance dependent dielectric
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Poisson-Boltzmann (PB) Model
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Polar Solvation
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For the general case of a solute of arbitrary shape with several partial charge sites, 

the electrostatic free energy is given by,

 satisfies the Poisson equation
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analytical solution available for spherical, 

cylindrical, or planar symmetry

: charging parameter

: electric field

<>v,q: average reaction field 
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Poisson-Boltzmann Theory
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Numerical Solution of PB

Numerical solution (FD, BE, FEM)

The finite difference formulation: spatial derivatives are approximated using neighboring 

points. A successive overrelaxation method used to get rapid convergence in solving the 

linear systems obtained from the finite difference discretization; 

The boundary element method: utilizes analytical solutions obtained in terms of Green’s

functions and discretization on the domain surface (molecular surface);

The finite element method: an adaptive multilevel approach based on tetrahedral

elements to create a dense mesh to capture the dielectric discontinuity across the molecular 

surface.
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Numerical Solution of PB

Finite difference and 

uniform mesh methods

•Fast solvers

•Low memory overhead

•Cartesian mesh

•Non-adaptive

•Poor solution resolution

•Previous parallel methods 

complicated and inefficient

Boundary element methods •Smaller numerical systems

•Easier interaction 

evaluation

•Less efficient solvers

•Only applicable to linear 

problem

Finite element methods •Highly adaptive

•Relatively fast solvers

•Previous solver and 

adaptive methods 

inadequate

•Previous parallel methods 

complicated and inefficient

Advantages Disadvantages

adapted from Nathan A. Baker’s slides, North Dakota State University, 2003



Numerical solutions of the PB equation

• The PB equation is solved on a grid in both surface and volume 

formulations.

• Finite difference: solves the PB equation on a volume grid (APBS, 

Delphi, UHBD)

• Finite element: solves integral form of the equation on a volume grid 

(PBF)

• Boundary element: surface grid.

• PB solvers often available in molecular simulation packages: Amber, 

CHARMM, IMPACT, etc.

• Main drawback: continuum dielectric models are not suitable for 

specific short-range solute-solvent interactions, finite size effects, 

non-linear effects, high ionization states.

• Other limitations are dependence on atomic radii parameters, speed, 

lack of analytical derivatives, dependence on frame of reference.



Generalized Born (GB) Model



what is the effective solvent polarization?
(solve Poisson equation)

Born: isolated point charge (q) in a spherical cavity of radius r

immersed in a dielectric continuum with dielectric constant 
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• Ion of charge q in a spherical cavity of radius a

• Widely used in biochemistry community

• Allows for partial charges

• Equal solvation energy for positive and negative 

ions

• Neglects cavitation  and dispersion energy

• Born radii, i, are not well defined

Generalized Born Approximation
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Overall Features of Generalized Born Models

The GB model “works” because it describes 

both dielectric polarization and dielectric 

screening effects. 
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GB implementations
• Most major biomolecular simulation packages (CHARMM, Amber, 

IMPACT, Gromacs, etc.) include pairwise descreening GB 

implementations suitable for MD calculations.

• Key ingredients are the atomic radii and the description of the solute 

volume.

• The atoms overlap problem is generally addressed by empirical scaling 

coefficients parameterized with respect to higher level calculations –

that is the geometric model is parameterized in addition to the energetic 

model (ACE, GB/SA, GBHCT, GBSW)

• Work on the AGBNP series of models shows that “geometric” 

parameterization is unnecessary.

• Some implementations (GBMV, SGB) perform numerical integration on 

a grid (volume or surface) – non-analytic, higher computational cost, 

difficulties with derivatives,  dependence on coordinate frame.

• Some implementations differ in the choice of the GB distance function 

f(r)

• Many of the models include continuum dielectric “correction” terms.

• Recent developments have focused on the “interstitial” volumes 

problem (GBneck, GBMV, AGBNP2). 



Other Implicit Solvent Models



PCM – Polarizable Continuum Model

• Shape of cavity determined by shape of solute

– Overlapping van der Waals spheres (PCM and CPCM)                     

(all atom or united atom)

– Solvent accessible surface

– Isodensity surface (IPCM, SCIPCM)

• Electrostatic potential from solute and polarization of 

solvent must obey Poisson equation 

• Polarization of solvent calculated numerically

– FE or FD solution of the Poisson equation

– Apparent surface charge method

– Generalized Born / surface area
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Multipole Expansion Methods

• Aka Kirkwood-Onsager Model (SCRF=Dipole)

• Solute with dipole, , in a spherical cavity of 

radius a.

• Easily generalized for multipole expansions

• Multipole expansions are slow to converge
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Multipole Expansion Methods

• QM requires a new potential term in F

• Allows solute to respond to the reaction potential 

resulting from polarization of the solute

• MPE easily rolled into the SCF/CPHF equations

• Very sensitive to the cavity radius a

• Determine a from the molecular volume [Volume 

and iop(6/44=4)]

V  r R     R 
2( 1)

(2 1)a3
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Apparent Surface Charge (ASC) methods

• The polarization of the solute’s charge distribution, 

M, must obey Poisson equation

• On the cavity surface, , two jump conditions exist

• From the second jump condition, the apparent 

surface charge, (s), can be defined
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Boundary Element Method
• BEM used to solve ASC equation

•  approximated by tesserae small enough to 

consider (s) almost constant within each tessera

• A set of point charges, qk, are defined based on the 

local value of (s) in a tessera of area Ak

• Adaptable for linearized Poisson-Boltzmann 

applications: nonzero ionic strength solvents

• FMM speed up BEM calculations
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ASC Methods: PCM
• The Polarizable Continuum Model (PCM) is the 

oldest ASC method.

• The PCM surface charge is

• Three major formulations
– DPCM (SCRF=PCM)

– IPCM (SCRF=IPCM)

– SCIPCM prone to stability issues (SCRF=SCIPCM)

– CPCM = COSMO with k=0.5 (SCRF=CPCM)

– IEFPCM = IVCPCM = SS(V)PE recommended 
method (SCRF=IEFPCM) 
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Binding Free Energy Calculations



Free Energy of Ligand Binding
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Free Energy of Ligand Binding (Cont’d)
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Crystal Structure of HIV-1 RT/8Cl-TIBO 

(1UWB, Resolution 3.2 Å)
Efavirenz (SustivaTM)

A Blind Test: Prediction of the Complex 

Structure and Binding Free Energy for HIV-1 

RT/Efavirenz



Computational Strategy for Modeling
Protein Complexes

Dock small molecule to protein

Run MD simulation for each 

docking pose

Calculate binding affinities 

(MM-PBSA)

Select most favorable binding 

mode



1 (-13.2) 2 (3.0) 3 (-6.4)

4 (-6.2) 5 (-6.3)

Experimental 

Expt. –11.6 kcal/mol

Magenta: 8-Cl TIBO

Cyan: Efavirenz

Relative Positions and Orientations of
Efavirenz to 8Cl-TIBO Suggested by Docking



Alignment of the model 

structure (yellow) and the 

crystal structure (cyan) for 

HIV-1 RT/efavirenz. 

The RMSD of the 54 C is 

1.1 Å.

How Well does MD Reproduce the Crystal 
Structure?

Wang et al. J. Am. Chem. Soc., 123, 5221-5230 (cited 380 times).



Active And Inactive Conformations of Human Orexin GPCR

1. Biology background

Respond to orexin neuropeptides in the central 

nervous system to regulate sleep and other 

behavioural functions in humans. 

Suvorexant (SUV), is a drug to treat insomnia

1. Experimental Structures

Orexin GPCR (4S0V): resolved at 2.5 Å, but is 

an inactive conformation. 

Neurotensin receptor NTS1 (4GRV): resolved at 

2.80 Å, is an active conformation (in complex 

with neurotensin)
RMSD: 3.19 Å

Sequence Identity: 20.1 % 



Glide Successful Docks Suvorexant Into Binding Pocket 

Suvorexant (SUV)

A drug used to treat insomnia

Glide Score: -8.19

RMSD        :  0.42 Å

LIG, a selective OR2 inhibitor



Black: receptor 
Red: ligand without fitting 
Blue: ligand with fitting

A

C D

B

RMSD plots of MD simulations

(A) hOX1R/LIG (B) hOX1R/Suvorexant

(C) hOX2R/LIG (D) hOX2R/Suvorexant



MM-PB/SA Analysis

Ligand Energy Terms hOX1R hOX2R

Suvorexant EvDW -57.6 ± 0.1 -58.2 ± 0.1

EEEL -8.4 ± 0.1 -4.6 ± 0.1

GPB 37.3 ± 0.2 33.6 ± 0.0

GSA -4.2 ± 0.0 -4.1 ± 0.0

GPBSA 33.1 ± 0.2 29.5 ± 0.0

EEEL+GPB 28.9 ± 0.2 29.0 ± 0.1 

TS -23.6 ± 0.0 -24.2 ± 0.0

Gbind -9.3 ± 0.2 -9.1 ± 0.1

LIG EvDW -53.5 ± 0.2 -55.2 ± 0.1

EEEL -22.8 ± 0.2 -21.9 ± 0.3

GPB 53.8 ± 0.1 52.5 ± 0.4

GSA -4.3 ± 0.0 -4.5 ± 0.0

GPBSA 49.4 ± 0.1 48.0 ± 0.4

EEEL+GPB 31.0 ± 0.2 30.6 ± 0.1

TS -23.3 ± 0.0 -22.9 ± 0.0

Gbind -3.6 ± 0.1 -6.1 ± 0.1



A B

DC

A: OR1/LIG 

B: OR1/SUV

C: OR2/LIG

D: OR2/SUV

Hot Spots Identified by MM-GB/SA Analysis



Traditional Free Energy Methods

1. Free energy perturbation (FEP)

2. Thermodynamic integration (TI)

3. Potential of mean force (PMF)



Free energy perturbation (FEP) and

Thermodynamic integration (TI)



Free energy differences can be calculated relatively easily and several 

methods have been developed for this purpose.  The starting point for 

most approaches is Zwanzig’s perturbation formula for the free energy 

difference between two states A and B: 

The equality should hold if there is sufficient sampling.

However, if the two states are not similar enough, this is difficult to 

achieve and there will be a large hysteresis effect (i.e. the forward and 

backward results will be very different).
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Free energy perturbation (FEP)



To obtain accurate results with the perturbation formula, the energy 

difference between the states should be < 2 kT, which is not satisfied 

for most biomolecular processes.  To deal with this problem, one 

introduces a hybrid Hamiltonian 

and performs the transformation from A to B gradually by changing 

the parameter from 0 to 1 in small steps. That is, one divides [0,1] 

into n subintervals with {i, i = 0, n}, and for each i value, calculates 

the free energy difference from the ensemble average

BA HHH   )1()(

i
kTHHkTG iiii 

 /))]()((exp[ln)( 11  
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FEP with alchemical transformation
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iiGG 

The total free energy change is then obtained by summing the 

contributions from each subinterval

The number of subintervals is chosen such that the free energy 

change at each step is < 2 kT, otherwise the method may lose its 

validity.   Points to be aware of:

1. Most codes use equal subintervals for i.  But the changes in Gi

are usually highly non-linear.  One should try to choose i such 

that Gi remains around 1-2 kT for all values.

2. The simulation times (equilibration + production)  have to be 

chosen carefully.  It is not possible to extend them in case of 

non-convergence (have to start over).
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FEP with alchemical transformation - continued
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Another way to obtain the free energy difference is to integrate 

the derivative of the hybrid Hamiltonian H(:

This integral is evaluated most efficiently using a Gaussian quadrature.

In typical calculations for ions, 7-point quadrature is sufficient.  

(But check that 9-point quadrature gives the same result for others)

The advantage of TI over FEP is that the production run can be 

extended as long as necessary and the convergence of the free energy 

can be monitored (when the cumulative G flattens, it has converged).
59




 















H

dpdqe

dpdqe
H

d

dG
kTH

kTH

/

/

Thermodynamic integration (TI) 



A very common question is how a mutation in a ligand (or protein) 

changes the free energy of the protein-ligand complex. 

+  A

GA

Gbulk(AB) Gbs(AB)

+ GB B

Thermodynamic cycle 60

)()( BAGBAGGG bulkbsAB 

Example: Free energy change in mutation of a ligand



1.   Ion selectivity of potassium channels

2. Selectivity of amino acid transporters (e.g. glutamate transporter)

3.  Free energy change when a side chain  is mutated in a bound ligand.

Similar calculation as above.  Important in developing drug leads 

from peptides.
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Applications



At zero temperature, the potential function U is sufficient to 

characterize the system completely.  At room temperature, the 

fundamental quantity is the free energy, F = U  TS, which creates the 

sampling problem.  Example: F=  24, U=  41, and TS=  17 (kJ/mol) 

for liquid water at STP.

Statistical weight:

kTxUexP /)(~)( 

But if S2 >> S1

we may have

F2 < F1
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Sampling Issue



In FEP, one has to decide on the number of windows and the

equilibration time in advance. The windows are created serially, so

if the equilibration time is inadequate, it has to be repeated using

longer equilibration time and the initial data are wasted.

•A second potential problem in FEP calculations is the requirement  

that Gi remains around 1-2 kT for all windows.  Because the 

change in the free energy is nonlinear, it is very difficult to guess 

the number of windows one should use.  For the same reason, 

using fixed intervals is not optimal.  Exponentially spaced 

intervals would reduce the required number of windows by half.
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Points to consider  for FEP



Example: Na+ binding energy in glutamate transporter 

Window G(Na+; b.s. bulk)

40 eq. 22.9 

60 eq. 26.3

65 exp. 27.1



Free energy change G at each step of FEP calculation



Points to consider for TI 

• In TI , one only need to specify the number of windows in 

advance.  The data can be divided into equilibration and 

production parts later.  Moreover, one can continue accumulating 

data if there is a problem with convergence, thus there is no 

wastage of data.  

• Convergence can be monitored by plotting the running average of 

the free energy.  Flattening out of the curve is usually taken as a 

sign for convergence.

• Because small number of windows are used in TI, equilibration may 

prove difficult in some systems.  An initial FEP calculation with 

large number of windows can resolve this problem (choose the TI 

windows from the nearest FEP window).
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Example: Na+ and Asp binding energies in glut. transporter

TI calculation of the 

binding free energy of 

Na+ ion to the binding 

site 1 in Gltph.

Integration is done using 

Gaussian quadrature 

with 7 points.

Thick lines show the 

running averages, which 

flatten out as the data 

accumulate.  Thin lines 

show averages over 50 

ps blocks of data.



Asp binding energy in glutamate transporter

TI calculation of the 

binding free energy of 

Asp to the binding site  

in Gltph.

Asp is substituted with 

5 water molecules.

First 400 ps data 

account for equilibration 

and the 1 ns of data are 

used in the production.
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Computational Details – Solvation Free 
Energy Calculations

1. Thermodynamics integration
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DV/DL ~ Simulation Time Plot clambda = 

0.31608 for Methanol

Red line: cumulative DV/DL

Charging in Gas Phase 
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DV/DL ~ Simulation Time Plot clambda = 

0.31608 for Toluene

Charging in Water
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DV/DL ~ Simulation Time Plot clambda = 

0.31608 for Toluene

Disappearing in Water
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Performance of Solvation Free Energy 

Calculations

Compound Expt. GAFF

Applequist/

GAFF 

Model 

B1

Model 

C1

1 methanol -5.07 -3.97 -5.91 -7.87 -6.61

2 benzaldehyde -4.02 -3.19 -4.74 -8.3 -7.51

3 acetic acid -6.7 -7.92 -4.56 - -

4 methyl amine -4.6 -4.75 -4.67 -5.76 -5.35

5 dimethyl amine -4.29 -2.41 -3.08 -5.44 -4.44

6 trimethyl amine -3.23 0.27 -0.16 -2.22 -1.99

7 acetamide -9.72 -9.15 -11.38 -10.27 -10.55

8 ammonium -81.53 -68.91 -70.94 -73.46 -73.16

9 N-guanidinium -66.07 -59.61 -66.57 - -

10 acetate ion -80.65 -94.81 -99.54 -107.26 -104.1

All energies in kcal/mol



Potential of mean force (PMF)



Potentials of Mean Force

• May wish to examine the Free Energy as a function of some 
inter- or intramolecular coordinate.  (ie. Distance, torsion 
angle etc.)

• The free energy along the chosen coordinate is known as the 
Potential of Mean Force (PMF).

• Calculated for physically achievable processes so the point of 
highest energy corresponds to a TS.

• Simplest type of PMF is the free energy change as the 
separation (r) between two particles is varied.

• PME can be calculated from the radial distribution function 
(g(r)) using:

– g(r) is the probability of finding an atom at a distance r from another atom.

constant)(ln)( B  rgTkrA



Potentials of Mean Force

• Problem:  The logarithmic relationship between the PMF and 

g(r) means a relatively small change in the free energy (small 

multiple of kBT may correspond to g(r) changing by an order 

of magnitude.

– MC and MD methods do not adequately sample regions 

where the radical distribution function differs drastically 

from the most likely value.

• Solution: Umbrella Sampling.

– The coordinates of interest are allowed to vary over their 

range of values throughout the simulation. (Subject to a 

potential modified using a forcing function.)



Umbrella Sampling

• The Potential Function can be written as a perturbation:

– Where W(rN) is a weighting function which often takes a quadratic form:

– Result: For configurations far from the equilibrium state, r0
N, the 

weighting function will be large so the simulation will be biased along 
some relevant reaction coordinate.

– The Boltzmann averages can be extracted from the non-Boltzmann 
distribution using:

• Subscript W indicates that the average is based on the probability PW(rN), 
determined from the modified energy function V ‘(rN).
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Points to consider in umbrella sampling

Two main parameters in umbrella sampling are the force constant, k 

and the distance between windows, d.  In bulk, the position of the 

ligand will have a Gaussian distribution given by

The overlap between two Gaussian distributions separated by d

The parameters should be chosen such that 10% > % overlap > 5%

If the overlap is too small, PMF will have discontinuities 

If it is too large, simulations are not very efficient.
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Steered MD (SMD) simulations and Jarzynski’s equation

Steered MD is a more recent method where a harmonic force is 

applied to an atom on a peptide and the reference point of this force 

is pulled with a constant velocity.  It has been used to study unfolding 

of proteins and binding of ligands.  The discovery of Jarzynski’s

equation in 1997 enabled determination of PMF from SMD, which has 

boosted its applications.
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Jarzynski’s equation:

Work done by 
the harmonic force

This method seems to work well in simple systems and when G is large

but beware of its applications in complex systems!
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Steered MD (SMD)



Example: PMF for binding of charybdotoxin to  K+ channel

From the previous examples, we have seen that ions equilibrate quite 

fast (~100 ps) and  < 1 ns production run is sufficient for PMF.  

For complex ligands, the situation 

is obviously more complicated.  

For one thing, the ligand may be 

distorted, which will lead to 

erroneous results.  

One also requires much longer 

equilibration of the system 

(typically > 1 ns), and longer 

production  runs ( > 1 ns).



Convergence of the toxin PMF

Force constant: k=20 kcal/mol/A2   Umbrella windows: 0.5 A

Each color represents 400 ps of sampling. The first 1.2 ns is  dropped for 

equilibration and  PMF is obtained from the last 2 ns (black line)



Lab Section



Run MD Simulations

1. Run MD simulations

sander 

pmemd

pmemd.MPI

pmemd.cuda

2. Replay MD Trajectories With VMD



Analyze MD Snapshots

1. Programs

ptraj, cpptraj

2. Input file for ptraj and cpptraj



MM-PB/GBSA

1. Programs

mmpbsa.py

2. Input files

3. Output files



Delphi 



Use Pymol to plot electrostatic potential


