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Potential Functions



Potential Functions

= Molecular Mechanics
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Valence Force Field

Typical Expressions
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Lenard-Jones Potential
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Minimization



Potential Energy Surface

Extrema (stationary points, where the gradient is zero):

. maxima
saddle point

Minimization Methods

Simplex

Steepest descent
Conjugated gradient
Newton Raphson
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One-dimensional optimization

maximum
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Multidimensional Optimization

Saddle point Maximum

Saddle a a
point ?f=(a_i:raj)
f

/1 - 1
1" stk gradient
0 for Product B

Minimum for |
Product A

The coordinates can be
Cartesian (X.,y,Z..),

N N or internal, such as
Minmam o Reactafl N~ bondlength and angle

displacements)
Force: F=- V E (Potential energy)
V f=0 - Stationary Point (minimum, maximum, or saddle point)



Hessian matrix

A matnix of second-order derivatives of

the energy with respect to atomic

coordinates (e.g., Cartesian or internal

coordinates)
Sometimes called force matrix —

matrix size of (3N-6)x(3N-6)
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Approximate the complex energy landscape by harmonic potentials

around a stationary point (x;{",..x,"") [VE(x",..x"")=0]

E(xpx,) = E(x{™,.xS)+1> 3 H (E)(x, —x")(x, —x\"™)
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Contraction (One Dimension)

Simplex Method

Try a smaller step

1
N

If X' is still the worst point...

Reflection

II

"

This is the default new trial point

Reflection and Expansion

If reflection results in new minimum...

Move further along
minimization direction




Steepest Descent

Steepest descent direction g=-VE

\
r=(xl,..xn), g - (3N-6) -dimensional vectors \

r,=L+4g./|g| @
Advantage: :

*local minimization is guaranteed

efast minimization far from the minimum
Disadvantage:

* slow descent along narrow valleys
* slow convergence near minima R{Q /
N e 26 /

History gradient information is not kept



Conjugate Gradient Methods

Search direction is chosen using history gradient information

Initial direction — the steepest descent direction, h, = g,=-VE
I, =T, +ch,

¢ is defined by a one-dimensional

minimization along the search direction.

h,, =g.+7.uh

Fletcher-Reeves method: Vi, = Ilg gMIJ
Polak-Ribiere method: y.., = (g"“l_ glg)gfﬂ
g

Polak-Ribiere may be superior for non-
quadratic functions.

Gradient history is equivalent to implicit use of the Hessian matrix.



Newton-Raphson Methods

Explicit use of Hessian matrix.

Quadratic approximation : £(r) = E(r,)— Z (F 4, —5 & fi“ﬁ )

¢,- normal coordinates, I — T, = th k FE(TD)— ZFI

k=1
&, and 1, - eigenvalues and eigenvectors of the Hess.lan matn:{ at rﬂ

One-step optimization _F
of quadratic functions g —) VE(r)=0 [

For arbitrary functions

£ =1+ Y L(E)E )/ £ (r)

=]

Descent direction for &, (r,) > 0

Finds the closest stationary point (either
minimum, maximum, or saddle point).




Convergence Criteria
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. Maximum steps

. RMS displacement

. RMS force

. Maximum Displacement
. Maximum Force

used by AMBER
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Molecular Dynamics Simulations



Molecular Dynamics (MD) Simulations
Why?

Static = Dynamic

562 water molecules




Molecular Dynamics

MD is our approximation to how molecules explore their
potential energy surface in the real world
The atoms are “heated” by giving them a distribution of

velocities corresponding to temperature we wish to
simulate

The wiggling and jiggling of the atoms is then obtained by
Integrating the Newtonian laws of motion
This gives us the energy of all states occupied at that

Condition (temperature, pressure) as long as we simulate
long enough (Ergodic hypothesis)



Molecular Dynamics Simulations

How?
Newton’s Law of Motions

F(X) ==YV potenian |~ Ma(t) ()
V(it=0)=V, (2

%<V02i’a> = kZT (a=x,Y,z) (3) (Equipartition Theorem)

V(t+At) =V (t)+a(t)Aat (4)
X (t+Ath= X () +AV (1) (5)
Two Biggest challenges in MD simulations:

1. Values of inter-atomic Newtonian forces must be accurate.
2. Time step At must be very small to represent fastest vibrations (2 fs).




Timescales

A8wuyg

... [pertiunoidng, |1, Bond vibrations - 1 fs
collectve motons 28 *| eanangemens | 2. Collective vibrations - 1 ps
3. Conformational transitions - ps or longer
4. Enzyme catalysis -
localized . A
motions microsecond/millisecond
5. Ligand Binding - micro/millisecond

6. Protein Folding - millisecond/second

Conformational Coordinate

Molecular dynamics:
Integration time step — 1 or 2 femtosecond
Accessible timescale: 10 nanoseconds to 1u seconds.



MD Simulations in Studying Biological Systems

rabbit hemorrhagic

T i1 i = 1-ms simulations
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Benchmark of AMBER GPU-MD for FactorlX
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Steps in Molecular Simulations Studies

1. Build realistic atomistic model of the system

2. Simulate the behavior of your system over time
using specific conditions (temperature, pressure,
volume, etc)

3. Analyze the results obtained from MD and relate
to macroscopic level properties



Basic Procedure of Performing MD Simulations

Prepare An Initial Atomic Model
Assign Initial Velocities

Calculate Forces Acting On Each Atom

Move Each Atom According to Those
Forces

Advance Simulation Time by At




Molecular Dynamics

= Solve Newton’s equation for a molecular system:

Potential Function — Force i — —a—r
i
Newton’s Law: E—ma

F.=force on ith atom
m; = mass of ith atom
a;—acceleration of ith atom



How do you run a MD simulation?

® Get the initial configuration

® Assign initial velocities

At thermal equilibrium, the expected value of the kinetic energy of
the system at temperature T is:

1 3N ) 1
<Ekin> = Ezmivi = E(SN)kBT
i=1

This can be obtained by assigning the velocity components v, from
a random Gaussian distribution k T
— B

with mean 0 and standard deviation (kgT/m;): <V-2>

M.



Integrator: Verlet Algorithm

Start with {r(t), v(t)}, integrate it to {r(t+At), v(t+At)}: O

@ 7 A, vitra)

The new position at t+At: {r(t), v(t)}

1
r(t+At) =r(t) +v(t)At + 5 At?a(t) + O(At®) (1)
Similarly, the old position at t-At:

r(t—At) =r(t) —v(t)At + % At?a(t) —O(At®) (2)
Add (1) and (2):

r(t+ At) = 2r(t) — r(t — At) + At*a(t) + O(At*) (3)
Thus the velocity at t is:

v(t) = (1) :ZiAt(r(HAt)—r(t—At))+0(At2) ()



Periodic Boundary Condition



Periodic Boundary Conditions

infinite system with small number of
particles

remove surface effects I

shaded box represents the system we
are simulating, while the surrounding
boxes are exact copies in every detail

whenever an atom leaves the
simulation cell, it is replaced by another
with exactly the same velocity, entering
from the opposite cell face (number of
atoms in the cell is conserved)

I, IS the cutoff radius when calculating
the force between two atoms



Minimum Image

Bulk system modeled via
periodic boundary
condition

= not feasible to include
Interactions with all images

= must truncate potential at half
the box length (at most) to
have all separations treated
consistently

1 Only interactions
considered

These two are same

Contributions from distant distance from
Separations may be central atom
Important

Same atoms



System Configurations



Statistical Ensembles

QN,V,B) = ) e PR

[
Q is called the
Canonical Partition Function.

A(N,V,T) = —kTInQ canonica
S(N,V,E) = —kln2 micro — canonical
pV(V,T,u) = —kTInZ  grand canonical
G(N,P,T) = —kTlnA thermal — isobaric

In Equilibrium MD, we want to sample the ensemble as best as
possible!



Molecular Dynamics Ensembles

Constant energy, constant number of particles (NE)
Constant energy, constant volume (NVE)
Constant temperature, constant volume (NVT)

Constant temperature, constant pressure (NPT)



Simulating at constant T
the Berendsen scheme

Bath supplies or removes heat from the system as
approptriate

Exponentially scale the velocities at each time step by the
factor A:

T: “kinetic” temperature

where T determines how strong the bath influences the
system

[ Berendsen et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684 (1984) ]




Simulating at constant P:
Berendsen scheme

Couple the system to a pressure bath

Exponentially scale the volume of the simulation box at each
time step by a factor A:

where

L : volume

where K : isothermal compressibility x.. position of particle i
F. : force on particle i

Tp : coupling constant

[ Berendsen et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684 (1984) ]




Time averages and ensemble averages

macroscopic numbers of atoms or molecules (of the order of 1023,
Avogadro's number is 6.02214199 x 1022 ): impossible to handle for MD

statistical mechanics (Boltzmann, Gibbs): a single system evolving in
time is replaced by a large number of replications of the same system

that are considered simultaneously

time average is replaced by an ensemble average:

<A>ensemble - <A>time ErgOdiC hypOthESiS

<A>ensemble :jjdedrNA(pN ’ rN)IO(pN J rN




Ergodic hypothesis

m (Classical statistical mechanics integrates over all of phase

space {1,p}.

m ‘The ergodic hypothesis assumes that for sutficiently long
time the phase trajectory ot a closed system passes
arbitrarily close to every point in phase space.

® Thus the two averages are equal



Analyzation MD

« Averages
* Fluctuations
« Time Correlations



Time variation of energies

it

a kinetic A

pT =08313¢

energies | <

600 1100 1600 600 1100 1600
MD STEFS

Fig.3.3. Evolution of the kinetic energy during a molecular dynamics simulation,
During the first 1000 MD steps the velocities were scaled every 50°th step so as to
give the desired temperatures. All quantities are given in reduced units

B potential

P = 0.8313e

energies -

-1700
600 1100 1600 100 600 noo 1600

MD STEPS

Fig.3.4. Time dependence of the potential energy (in units of €)




Time variation of pressure

m Hquilibration of pressure with time
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Simple Average

— Mean energy

— Mean Structure

— RMS difference between two structures

— B-factor

B, =§7z2(RMSDi)2




Bulk-Density

m Density 1s one of a major molecular properties for
which van der Waals parameterization intends to
reproduce.

AR

m Perform NTP simulations




Temperature

Temperature Is related to the ensemble averaged
Kinetic energy by

o (BN —N,) kg T=(E, )y

where N Is the number of atoms and N, is the
number of constraints. Typically we require the
total linear momentum of the system is
constrained to zero (the center of mass of the
system does not move), and N, Is 3.



Pressure

Pressure is related to the product of the positions and
forces (for pairwise interactions):

Virial Theorem

PV = NkgT + (1/3) { i Iy fis Dy
H_/

Ideal gas contribution

where N Is the number of atoms, r;; is the distance
between a pair of interacting atoms, f;; Is the
corresponding force, and the sum is over all
pairwise interactions.



Compressibility Factor

Compressibility measures the deviation from the ideal
gas law PV = NkgT

7=V g > . F
Nk T 3Nk T

i<]j

where N is the number of atoms, r; Is the distance
between a pair of interacting atoms, f; Is the

corresponding force, and the sum is over all
pairwise interactions.



Isothermal Compressibility And
Thermal Expension Coefficient

Compressibility 1s a measure of the relative volume
change of a fluid or solid as a response to a pressure
change

Thermal expansion coefficient, a, Is defined as

_i(@Vj ~(VH)—(V)H) _d In(p(T)) In{p,)—In{p,)

A

o =
S/




Heat Capacity At Constant Volume

» Calculate internal energies at different temperatures
and take the partial derivatives:
C, = (0U / aT),
=(U2-U1)/(T2-T1) at constant V

» Calculate the fluctuation of internal energy around
Its mean value:
Nk T2 Cy, = { (U —(U)y,)? ) =(U? ), — (U2

It requires a longer simulation time for one simulation at
one temperature. (A trade-off!)



Isobaric Heat Capacity

= Heat capacity is a measure of the heat energy
required to increase the temperature of a unity
quality of a substance by a unit of temperature.




Enthalpy of Vaporization

Enthalpy of vaporization is the enthalpy change that occurs during the transition of
one mol of substance from the liquid to the gas phase, where each of the phases 1s
under the equilibrium pressure.

Another important molecular property to be used in van der Waals parameterization

AHvap(T) =H ( piT)gas - H (piT)quuid = Egas B Equuid + p(Vgas _Vliquid)
AH.., (T)= E as — Ejiquia + RT — p<Vquuid> +C
c=C,, +C_,+C. ,+C,

pol

E\%LVI — nvikaT

< (hy, hv.
Ecp 22(7+m)

e
C, =EM _EOM L EOM __pECM

vib,g,intra vib,l,intra vib,I,inter vib,l,inter

i=1




Static Dielectric Constant

» The static dieletric constant £(0) of a medium is
determined by the magnitude and density of the
molecular dipole moments and the extent to which
the directions of the dipole moments are correlated.

M is the total system dipole moment
»Polarizability correction

corr 47ZNO!/< >

pol



Diffusion Coefficient

mEinstein—-Smoluchowski Relation

im (-

nSelf-diffusion
TIP3P - 50
CH3O0OH — NMA -
= Diffusion of binary liquid mixtures



Radial Distribution Function

A radial distribution function measures the probability
of finding a particle as a function of distance from a

given particle.

g(r, Ar) oc { N(r, Ar) Yy, [ 7 r2Ar

N N
A\{

(@]
>

Number of The volume of a

particles between spherical shell
rand r + Ar from with thickness Ar

the given particle




RDF of NMA

RDF of O1-C1 And O1-C3

Ol

O
)J\ c
/
C2 ” N1

N-methyl acetic amide

Cl

5.45 6.55 7.65 8.75

Distance

| trajin j14_md8.trj.gz

L #

i radial rad1 0.1 10 @01 @01
+radial rad2 0.1 10 @C2 @C2
radial rad3 0.1 10 @01 @C1
radial rad4 0.1 10 @O1 @C3

Distance  1.05 . . 4.35

Distance




Correlation Function

A correlation function measures the relationship
between two variables:

Cy = XY O (X2 (Y2 ) 7

*If x (or y) fluctuate about a non-zero mean value, replace
X (ory) in the above equation by x — ( X )y, (Or y — Yy )u)-
If x =y, C,, Is called an auto-correlation function.

1 completely correlated
Cy = 0 Independent
—1 completely (anti-)correlated



Radius of Gyration

Radius of gyration Is used to describe the dimension
of a molecule

Radius of Gyration of 1BE9

11.4 M

o ]
e NI AR
R, . ~

Radius of Gyration

10.8
#time 499 999 1499 1999 2499 2999 3499 3999 4499 4999 5499 5999 6499 699

Simulation Time (ps)

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001
Simulation Time (ps)




Advanced Topics



Potential cut-offs

Bonded interactions: local, therefore O(N),
where N is the number of atoms in the molecule considered)

Non-bonded interactions: involve all pairs of
Atoms, therefore O(N?)

J

0id;
Z Arce &x

I, jnonbonded

Reducing the computing time: use of cut-off in Uyg
The cutoff distance may be no greater than %2 L (L= box length)



Potential truncation

common approach:
cut-off the at a fixed value R_,

problem: discontinuity in energy and force
possibility of large errors

- — Lennard-Jones
= === Abrupt truncation

12 14 16 18 20 22 24 26
R




Speed-up

« CPU/step [sec] CPU/ns [weeks]

e—

Qo
o

No cutoff

D
o
o
o
eps

5 3
1 ns = 1 million st

Cutoff 15, 12, 10 A

o0 oroe -seEsREE BT ESD
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L
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©
>
(b
L
o
Ly
I
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D
et
w
—

A

10000 20000 30000 40000 50000
Number of Variables

Tamar Schlick, “Molecular Modeling and Simulation”, Springer



Cutoff schemes for faster energy computation

o wjj-Weights (0< o; <1). Can be used to exclude bonded terms,
or to scale some interactions (usually 1-4)

o S(r) : cut-off function.

Three types:
1 r<b

0O r>b

1) Truncation: B :{




Cutoff schemes for faster energy computation

2. Switching

0

1 r<a
S(r) = {1+ y(?2y(r)-3] a<r<b




Ewald Sum Method

» calculate all interactions with infinite lattice implied by periodic BCs
using 1deas developed for treating 1onic crystals

* consider charge version (also versions for dipoles & other multipoles)

e within primary box V., = ZZ| f] qi ]
j>ioi=1 }:
» for periodic lattice
I 18

Vv, =— - 1

/

elect T bt Lmd . }" +ﬂ| .71
=] Nlattice

vector

2 15 only conditionally convergent
(must group terms to get sensible
results); consider spherical arrays
of cells




Ewald Sum Method

* in the Ewald method the direct sum 1s made short ranged by adding
a neutralizing charge distribution around each charge:

3 A
p,(F) = —q,——exp(-a*r?) di

: 4 : r-space
* p(r) 1s then subtracted in a % sum
2nd summation performed in \/ \/
reciprocal “£” space Pi

<

p,(k) = [ dF exp(=k - F)p,(F) A’O / /\
r \ k-space
\/ \/ sum
* the result iS' ’

(o~ 4i4; erfc(afr; +nl)
[t +n|

r-space sum L = cell length

1  qiq; 47°
7TL3 47’(‘60 k2

K
exp ( - @) cos(k-ry)  /-space sum

Z IL self term and surface term (for
=1

3L3 array in vacuum)




Ewald Sum Method

Additional corrections:

= arises from a gaussian acting on its own site
= (self-energy correction)

= or from a surface in vacuum



Particle Mesh Ewald

s Similar to Ewald method except that it uses FFT
s P3ME method has a very similar spirit with PME

1. Assigning charges onto grids

2. Use Fast Fourier Transform to speed up the k-space evaluation
3. Differentiation to determine forces on the grids

4. Interpolating the forces on the grid back to particles

5. Calculating the real-space potential as normal Ewald



Fast Multipole Method

Represent charge distributions
in a hierarchically structured
multipole expansion

Translate distant multipoles into
local electric field

Particles interact with local fields
to count for the interactions
from distant charges

Short-range interactions are
evaluated pairwise directly

OOO
o O

OO

CPU: O(N)




Multiple time step dynamics

m Reversible reference system propagation algorithm (r-

RESPA)

= Forces within a system classified into a number of groups
according to how rapidly the force changes

® Hach group has its own time step, while maintaining accuracy
and numerical stability



« SPC, SPC/E (Berendsen)
« TIP3P, TIP4P, TIP5P (Jorgensen)
* TIPAP/FQ, POLS5 (Berne)

£ kJ

Model Type f
¥P o iﬁ( mul'1

3166 | 0630 : - +0.410 | -0.8200 | 10947
3166 | 0630 : - +04235 | -0.8476 | 10947

3.166 | 0650 : - +0.4350 | -0.8700 | 10947
3.15061 | 0.6364 | O - +04170 | -0.8340 | 104 52

spc P4
spciE B
SPCIHW (D,0) [220]

Tip3p NS0]

315365 | 0Bde0 | 0, ; +0.5200 | -1.0400 | 104 52
315365 | 06460 | 0. : +0 532 | J1 2R3 | 10452
four terms used _ J4a.c | +06213 |+1.2459 | 102 748
312000 | 08694 | 0 : +0.2410 | -0.2410 | 104 52
2ggayd| d . . varies® |-042188| 10452

TIP4p [180]
TIP4P-FQ [197]
SWFLEX-4 b [201]
TlPgp HE]
POL5TZ b [256]

d
d
5|
d
ppc a b[3] b 1323400 | 06000 | 0. ; +0.5170 | -1.0340 | 106.00
¥
&
L
]
(]




MD —Limitation

1. Quality of the force field

2.

Size and Time — atomistic simulations can be performed only
for systems of a few tenths of angstroms on the length scale and
for a few nanoseconds on the time scale

Conformational freedom of the molecule — the number of
possible conformations a molecule can adopt is enormous,
growing exponentially with the number or rotatable bonds.

Only applicable to systems that have been parameterized

Connectivity of atoms cannot change during dynamics — no
chemical reactions



AMBER



AMBER Force Field Development

1. A Brief Introduction on AMBER
2. General AMBER Force Field (GAFF)

3. AMBER Polarizable force field

4. Molecular Mechanical Toolkits

ambermd.org



AMBER
(Assisted Model-Building with Energy Refinement)

Founder: Peter A. Kollman at UCSF (1944 - 2001)
Current Leader: David A. Case at Rutgers University

AMBER Facts:

* One of the two major molecular simulation packages
« The world’s fastest MD package using GPU

« Extensively applied both in academia and industry

2002 2014



Molecular Mechanical Toolkits

Antechamber
Wang et al. J. Mol. Graphics & Modeling, 25, 247-260

= First tool in the field to automatically generate models for
arbitrary organic molecules

= Extensively applied in structure-based drug design

= Extensively used among and outside the AMBER community
(it is able to generate MMFF models in CHARMM/NAMD
formats)

Online Tools

= Generate force field parameters for arbitrary organic
molecules from various inputs

= Database search

= (Calculate binding free energy with MM-GBSA

https://mulan.swmed.edu/mmfft



https://mulan.swmed.edu/mmfft

Protein Folding From Extended Conformations

AR

20JF (Trp-cage, relaxation time is 3.1 us)

1LE1 (tryptophan zipper 2, relaxation time is 1.2 us)

tryptophan zipper 2
2. Parm99 fails to fold Trp-cage at room temperature (Trp-cage can be
folded with Parm99 at 325 K)
3. Starting from fully extended conformation
4. GBMD at 298 K



Trp-cage Is Folded within 200 Nanoseconds with
Parm99-Mod

Main chain RMSD is 0.80 A
Simmerling et al’s folding achieved an RMSD of 1.1 A using Parm99 at 325 K

(JACS, 124, 11258-11259)



In silico Folding of Trp-cage
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Tryptophan Zipper 2 Is Folded Within 100
Nanoseconds with Parm99-Mod

Main chain RMSD is 0.79 A.
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How To Generate System Topologies

Residue topology files

Force field parameter files
Additional force field parameter files
Topology files

LEAP (xleap and tleap)

Basic procedure

1) Source leaprc.ffXX

2) Load/generate structure file
3) Add counter ions

4) Add water box

5) Save topology files



Detailled MD
Scheme

Initial Coordinates

Minimize Structure

Assign Initial Velocities

Heating Dynamics

Equilibration Dynamics
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No
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Production Dynamics

Analysis of Trajectories




Graphics Antechamber

https://Mulan.swmed.edu/mmfft



https://mulan.swmed.edu/mmfft

Running MD Simulations

Programs
sander pmemd pmemd.MPIl pmemd.cuda
Input file for MD simulations

Running programs



Analyze MD Snapshots

1. Programs
ptraj, cpptraj
2. Input file for ptraj and cpptraj



Replay MD Trajectories With VMD



