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Potential Functions



Potential Functions

Non-bonded 

interaction

 Molecular Mechanics
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The force in x1 direction between (x1, y1, z1) and (x2, y2, z2)
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Minimization



Potential Energy Surface

minimum

maxima
saddle point

Extrema (stationary points, where the gradient is zero):

Minimization Methods

1. Simplex

2. Steepest descent 

3. Conjugated gradient

4. Newton Raphson









Simplex Method
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Convergence Criteria

1. Maximum steps 

2. RMS displacement

3. RMS force 

4. Maximum Displacement

5. Maximum Force

: used by AMBER



Molecular Dynamics Simulations



Molecular Dynamics (MD) Simulations

562 water molecules

Static  Dynamic

Why?



Molecular Dynamics

 MD is our approximation to how molecules explore their

potential energy surface in the real world

 The atoms are “heated” by giving them a distribution of

velocities corresponding to temperature we wish to 
simulate

 The wiggling and jiggling of the atoms is then obtained by

integrating the Newtonian laws of motion

 This gives us the energy of all states occupied at that

Condition (temperature, pressure) as long as we simulate 
long enough (Ergodic hypothesis)



Molecular Dynamics Simulations

Newton’s Law of Motions

How?
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Two Biggest challenges in MD simulations:
1. Values of inter-atomic Newtonian forces must be accurate.

2. Time step t must be very small to represent fastest vibrations (2 fs).

(Equipartition Theorem) 



Molecular dynamics:

Integration time step – 1 or 2 femtosecond

Accessible timescale: 10 nanoseconds to 1 seconds.

1. Bond vibrations - 1 fs

2. Collective  vibrations - 1 ps

3. Conformational transitions - ps or longer

4. Enzyme catalysis -

microsecond/millisecond

5. Ligand Binding - micro/millisecond

6. Protein Folding - millisecond/second

Timescales



MD Simulations in Studying Biological Systems

Courtesy of Tamar Schlick

 1-ms simulations 

of ubiquitin by D. 

E. Shaw

 5-ns simulations 

of HIV-1 capsid 

consisting of 64 

million atoms



Benchmark of AMBER GPU-MD for FactorIX

Courtesy of  ambermd.org



Steps in Molecular Simulations Studies

1. Build realistic atomistic model of the system

2. Simulate the behavior of your system over time 

using specific conditions (temperature, pressure, 

volume, etc)

3. Analyze the results obtained from MD and relate 

to macroscopic level properties



Basic Procedure of Performing MD Simulations

Prepare An Initial Atomic Model
Assign Initial Velocities

Calculate Forces Acting On Each Atom

Move Each Atom According to Those 
Forces

Advance Simulation Time by t

Record Energies and Snapshots of the 
Simulation System Periodically



Molecular Dynamics

 Solve Newton’s equation for a molecular system: 

Newton’s Law:
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Fi=force on ith atom

mi = mass of ith atom

ai=acceleration of ith atom

Potential Function  Force



How do you run a MD simulation?

 Get the initial configuration

 Assign initial velocities

At thermal equilibrium, the expected value of the kinetic energy of 
the system at temperature T is:

This can be obtained by assigning the velocity components vi from 
a random Gaussian distribution

with mean 0 and standard deviation (kBT/mi):
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Integrator: Verlet Algorithm
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Start with {r(t), v(t)},  integrate it to {r(t+t), v(t+t)}:

{r(t), v(t)}

{r(t+t), v(t+t)}

The new position at t+t:

Similarly, the old position at t-t:

(1)

(2)

Add (1) and (2):

Thus the velocity at t is:
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Periodic Boundary Condition



Periodic Boundary Conditions

 infinite system with small number of 
particles 

 remove surface effects

 shaded box represents the system we 
are simulating, while the surrounding 
boxes are exact copies in every detail

 whenever an atom leaves the 
simulation cell, it is replaced by another 
with exactly the same velocity, entering 
from the opposite cell face (number of 
atoms in the cell is conserved) 

 rcut is the cutoff radius when calculating 
the force between two atoms



Minimum Image

1. Bulk system modeled via 

periodic boundary 

condition

 not feasible to include 

interactions with all images

 must truncate potential at half 

the box length (at most) to 

have all separations treated 

consistently

2. Contributions from distant 

separations may be 

important

Only interactions 

considered

These two are same 

distance from 

central atom

Same atoms



System Configurations



𝑄 𝑁, 𝑉, 𝛽 = 

𝑖

𝑒−𝛽𝐸𝑖

Q is called the 
Canonical Partition Function.

A 𝑁, 𝑉, 𝑇 = −𝑘𝑇𝑙𝑛𝑄 canonical
𝑆 𝑁, 𝑉, 𝐸 = −𝑘𝑙𝑛𝛺 micro − canonical 
𝑝𝑉 𝑉, 𝑇, 𝜇 = −𝑘𝑇𝑙𝑛𝛯 grand canonical
𝐺 𝑁, 𝑃, 𝑇 = −𝑘𝑇𝑙𝑛𝛥 thermal − isobaric

Statistical Ensembles

In Equilibrium MD, we want to sample the ensemble as best as 
possible!



Molecular Dynamics Ensembles

Constant energy, constant number of particles (NE)

Constant energy, constant volume (NVE)

Constant temperature, constant volume (NVT)

Constant temperature, constant pressure (NPT)



Bath supplies or removes heat from the system as 
appropriate

Exponentially scale the velocities at each time step by the 
factor :

where  determines how strong the bath influences the 
system

Simulating at constant T:  

the Berendsen scheme 

system

Heat bath

Berendsen et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684 (1984)
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Simulating at constant P: 

Berendsen scheme

Couple the system to a pressure bath

Exponentially scale the volume of  the simulation box at each 
time step by a factor :

where  : isothermal compressibility  

P : coupling constant

system

pressure bath

Berendsen et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684 (1984)
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where

u : volume

xi: position of particle i

Fi : force on particle i



macroscopic numbers of atoms or molecules (of the order of 1023,

Avogadro's number is 6.02214199 × 1023 ): impossible to handle for MD

statistical mechanics (Boltzmann, Gibbs): a single system evolving in 

time is replaced by a large number of replications of the same system 

that are considered simultaneously

time average is replaced by an ensemble average:

Time averages and ensemble averages
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Ergodic hypothesis

 Classical statistical mechanics integrates over all of  phase 

space {r,p}.

 The ergodic hypothesis assumes that for sufficiently long

time the phase trajectory of  a closed system passes 

arbitrarily close to every point in phase space.

 Thus the two averages are equal



Analyzation MD

• Averages

• Fluctuations

• Time Correlations



Time variation of  energies

 kinetic 

energies

 potential 

energies



Time variation of  pressure

 Equilibration of  pressure with time



Simple Average
– Mean energy

– Mean Structure

– RMS difference between two structures

– B-factor
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Bulk-Density

 Density is one of  a major molecular properties for 

which van der Waals parameterization intends to 

reproduce.

 Perform NTP simulations
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Temperature

Temperature is related to the ensemble averaged 

kinetic energy by

½ (3N – Nc) kB T =  Ek M

where N is the number of atoms and Nc is the 

number of constraints. Typically we require the 

total linear momentum of the system is 

constrained to zero (the center of mass of the 

system does not move), and Nc is 3.



Pressure

Pressure is related to the product of the positions and 

forces (for pairwise interactions):

Virial Theorem

PV = NkBT + (1/3)  Si<j rij fij M

ideal gas contribution

where N is the number of atoms, rij is the distance 

between a pair of interacting atoms, fij is the 

corresponding force, and the sum is over all 

pairwise interactions.



Compressibility Factor

Compressibility measures the deviation from the ideal 

gas law PV = NkBT 

where N is the number of atoms, rij is the distance 

between a pair of interacting atoms, fij is the 

corresponding force, and the sum is over all 

pairwise interactions.
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Isothermal Compressibility And 

Thermal Expension Coefficient 

Compressibility is a measure of the relative volume 

change of a fluid or solid as a response to a pressure 

change
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Heat Capacity At Constant Volume

•Calculate internal energies at different temperatures 

and take the partial derivatives:

CV = (∂U / ∂T)V

= (U2 – U1) / (T2 – T1) at constant V

•Calculate the fluctuation of internal energy around 

its mean value:

NkBT2 CV =  (U – UM)2  =  U2 M – UM
2

It requires a longer simulation time for one simulation at 

one temperature. (A trade-off!) 



Isobaric Heat Capacity
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 Heat capacity is a measure of the heat energy 
required to increase the temperature of a unity 
quality of a substance by a unit of temperature. 
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Enthalpy of  Vaporization

 Enthalpy of  vaporization is the enthalpy change that occurs during the transition of  

one mol of  substance from the liquid to the gas phase, where each of  the phases is 

under the equilibrium pressure. 

 Another important molecular property to be used in van der Waals parameterization  
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Static Dielectric Constant 

The static dieletric constant (0) of a medium is 

determined by the magnitude and density of the 

molecular dipole moments and the extent to which 

the directions of the dipole moments are correlated.

M is the total system dipole moment
Polarizability correction
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Diffusion Coefficient 
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Einstein–Smoluchowski Relation

Self-diffusion

TIP3P - 50

CH3OH – NMA -

 Diffusion of binary liquid mixtures  



Radial Distribution Function

A radial distribution function measures the probability 

of finding a particle as a function of distance from a 

given particle.

g(r, r)   N(r, r) M / 4 r2r
r

rg

r

Number of 

particles between 

r and r  r from 

the given particle

The volume of a 

spherical shell 

with thickness r



RDF of  NMA

RDF of O1-C1 And O1-C3
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Correlation Function

A correlation function measures the relationship 

between two variables:

Cxy =  x y M / ( x2 M  y2 M) ½

•If x (or y) fluctuate about a non-zero mean value, replace 

x (or y) in the above equation by x –  x M (or y –  y M).

•If x = y, Cxx is called an auto-correlation function. 

Cxy = 

1 completely correlated

0 independent 

1 completely (anti-)correlated    



Radius of Gyration
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of a molecule 
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Advanced Topics



Potential cut-offs
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Non-bonded interactions: involve all pairs of 

Atoms, therefore O(N2)

Bonded interactions: local, therefore O(N), 

where N is the number of atoms in the molecule considered)

Reducing the computing time: use of cut-off in UNB

The cutoff distance may be no greater than ½ L (L= box length)



Potential truncation

common approach:

cut-off the at a fixed value Rcut

problem: discontinuity in energy and force 

possibility of large errors



Speed-up

Tamar Schlick, “Molecular Modeling and Simulation”, Springer
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Cutoff  schemes for faster energy computation

ij : weights (0< ij <1). Can be used to exclude bonded terms, 

or to scale some interactions (usually 1-4)

S(r) : cut-off function.

Three types:

1) Truncation:
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Cutoff  schemes for faster energy computation

2. Switching
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Ewald Sum Method



Ewald Sum Method



Ewald Sum Method

Additional corrections: 

 arises from a gaussian acting on its own site

 (self-energy correction) 

 or from a surface in vacuum



Particle Mesh Ewald

 Similar to Ewald method except that it uses FFT

 P3ME method has a very similar spirit with PME

1. Assigning charges onto grids

2. Use Fast Fourier Transform to speed up the k-space evaluation

3. Differentiation to determine forces on the grids

4. Interpolating the forces on the grid back to particles

5. Calculating the real-space potential as normal Ewald



Fast Multipole Method

 Represent charge distributions 
in a hierarchically structured 
multipole expansion

 Translate distant multipoles into 
local electric field

 Particles interact with local fields 
to count for the interactions 
from distant charges

 Short-range interactions are 
evaluated pairwise directly

CPU: O(N)



Multiple time step dynamics

 Reversible reference system propagation algorithm (r-

RESPA)

 Forces within a system classified into a number of  groups 

according to how rapidly the force changes

 Each group has its own time step, while maintaining accuracy 

and numerical stability



Water Model Parameters

• SPC, SPC/E  (Berendsen)

• TIP3P, TIP4P, TIP5P (Jorgensen)

• TIP4P/FQ, POL5 (Berne)



MD –Limitation

1. Quality of the force field 

2. Size and Time – atomistic simulations can be performed only 

for systems of a few tenths of angstroms on the length scale and 

for a few nanoseconds on the time scale

3. Conformational freedom of the molecule – the number of 

possible conformations a molecule can adopt is enormous, 

growing exponentially with the number or rotatable bonds.

4. Only applicable to systems that have been parameterized

5. Connectivity of atoms cannot change during dynamics – no 

chemical reactions



AMBER



1. A Brief Introduction on AMBER

2. General AMBER Force Field (GAFF)

3. AMBER Polarizable force field

4. Molecular Mechanical Toolkits

AMBER Force Field Development

ambermd.org



AMBER

(Assisted Model-Building with Energy Refinement)

Founder: Peter A. Kollman at UCSF (1944 - 2001)

Current Leader: David A. Case at Rutgers University

AMBER Facts:

• One of the two major molecular simulation packages

• The world’s fastest MD package using GPU

• Extensively applied both in academia and industry

2002 2014



Molecular Mechanical Toolkits

1. Antechamber
Wang et al. J. Mol. Graphics & Modeling, 25, 247-260

 First tool in the field to automatically generate models for 

arbitrary organic molecules

 Extensively applied in structure-based drug design

 Extensively used among and outside the AMBER community 

(it is able to generate MMFF models in CHARMM/NAMD 

formats)  

2. Online Tools
 Generate force field parameters for arbitrary organic 

molecules from various inputs

 Database search

 Calculate binding free energy with MM-GBSA

https://mulan.swmed.edu/mmfft

https://mulan.swmed.edu/mmfft


Protein Folding From Extended Conformations

1. Parm94/99 fails to fold tryptophan zipper 2

2. Parm99 fails to fold Trp-cage at room temperature (Trp-cage can be 

folded with Parm99 at 325 K)

3. Starting from fully extended conformation

4. GBMD at 298 K

2OJF (Trp-cage, relaxation time is 3.1 s)

1LE1 (tryptophan zipper 2, relaxation time is 1.2 s)



Trp-cage Is Folded within 200 Nanoseconds with 

Parm99-Mod

Red – NMR

Green - MD

Main chain RMSD is 0.80 Å

Simmerling et al’s folding achieved an RMSD of 1.1 Å using Parm99 at 325 K 

(JACS, 124, 11258-11259) 



In silico Folding of Trp-cage



Convergence of MD 

Trp-cage Structures 

to a NMR Structure



Tryptophan Zipper 2 Is Folded Within 100 

Nanoseconds with Parm99-Mod

Main chain RMSD is 0.79 Å.



How To Generate System Topologies

1. Residue topology files

2. Force field parameter files

3. Additional force field parameter files

4. Topology files

5. LEAP (xleap and tleap)

6. Basic procedure

1) Source leaprc.ffXX

2) Load/generate structure file

3) Add counter ions

4) Add water box

5) Save topology files



Detailed MD 

Scheme



Graphics Antechamber

https://Mulan.swmed.edu/mmfft

https://mulan.swmed.edu/mmfft


Running MD Simulations

1. Programs

sander  pmemd pmemd.MPI pmemd.cuda

2. Input file for MD simulations

3. Running programs



Analyze MD Snapshots

1. Programs

ptraj, cpptraj

2. Input file for ptraj and cpptraj



Replay MD Trajectories With VMD


