

Lecture 4: Molecular Mechanics

Junmei Wang Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas

Junmei.wang@utsouthwestern.edu

1. Gaussian Software Where to run Gaussian

- BioHPC
- TACC (lonestar lonestar5): <u>https://www.tacc.utexas.edu/</u>
 Technique support: <u>www.Gaussian.com</u>
- 2. Gaussian Input Formats
 - Cartesian
 - Z-matrix
 - Mixed

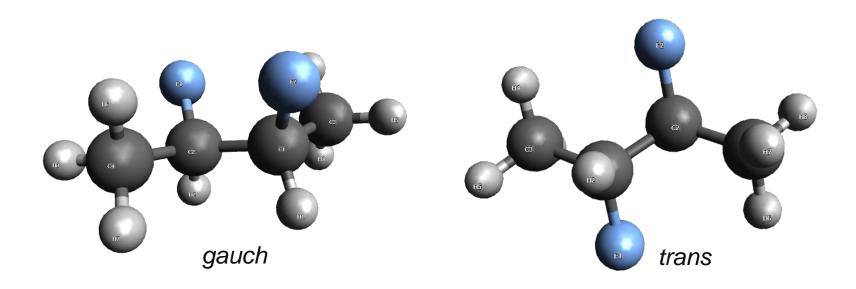
Software to generate inputs

- Antechamber (Mulan.swmed.edu/mmfft)
- Openbabel
- Avogadro
- Gaussview

3. Display orbitals, electron density, vibration modes etc.

- Avogadro (free)
- Gaussview
- VMD (free)

4. Optimization


 How to conquer optimization failures Opt=calcfc, scf=QC

5. Frequency Calculation

- ZPE
- Polarizability
- Scaling factor
- About negative frequencies

6. Compare two conformations of a molecule

Conformation	MP2 Energy (Hartree)	Thermochemistry Correction (hartree)	Relative Energy (kcal/mol)
gauch	-335.86814	0.123287	0.47
trans	-335.86878	0.123182	0.0

- 7. Thermochemistry property prediction (ZPE is scaled by a factor of 0.9804)
 - Atomization energy (energy difference between a molecule and its component atoms)

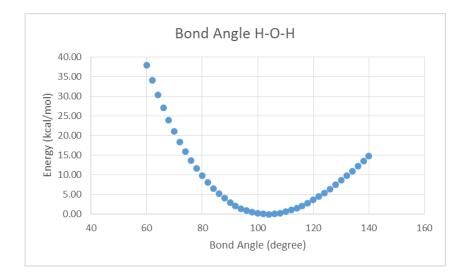
Molecule	E (hartree)	ZPE (hartree)	AE (kcal/mol)
Н	-0.500273		
Р	-341.196699		
PH ₂	-342.509406	0.013217	187.6 (148.3)
Experiment			144.7

• Electron affinity (the energy released when an electron is added to a neutral molecule)

Molecule	E (hartree)	ZPE (hartree)	AE (kcal/mol)
PH ₂ -	-342.554174	0.012412	
PH ₂	-342.509406	0.013217	28.60 (1.24 ev)
Experiment			29.06 (1.26 ev)

- 7. Thermochemistry property prediction (ZPE is scaled by a factor of 0.9804)
 - **Ionization potential** (the energy required to remove an electron from a molecule)

Molecule	E (hartree)	ZPE (hartree)	AE (kcal/mol)
PH ₂ +	-342.144153	0.013448	
PH ₂	-342.509406	0.013217	229.35 (9.95 ev)
Experiment			226.45 (9.82 ev)


• **Proton affinity** (the energy released when a proton is added to a molecule)

Molecule	E (hartree)	ZPE (hartree)	AE (kcal/mol)
PH ₄ +	-343.454091	0.035039	
PH ₃	-343.146909	0.023784	185.7
Experiment			187.1

8. Potential energy surface exploration

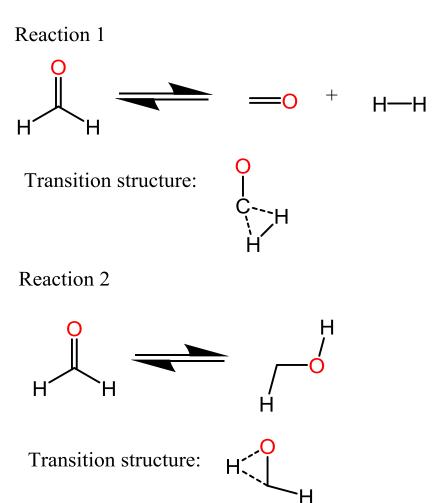
- **Bond length** Bond Length of H-O in Water 600 500 Energy (kcal/mol) 400 300 200 100 0 0.5 1.5 2 2.5 0 3 -100 Bond Length (Å)
- Bond angle

•

9. Reaction and Reactivity

• Enthalpy of reaction: $H^+ + H_2O \rightarrow H_3O^+$

Molecule	E (hartree)	Thermal Corr (hartree)	AE (kcal/mol)
H+	0.0	0.0014167	
H ₂ O	-76.196848	0.025254	
H ₃ O ⁺	-76.475105	0.038471	-167.20
Experiment			-165.3 ±1.8


For H⁺, only translational energy term, 3/2RT=0.889 kcal/mol is non-zero

• Enthalpy of reaction: $H_2CO \rightarrow H_2 + CO$

Molecule	E (hartree)	Thermal Corr (hartree)	Total E (hartree)
H ₂	-1.144141	0.013633	-1.130508
СО	-113.021215	0.008134	-113.013081
H ₂ CO	-114.167747	0.031100	-114.136647
∆H (Products - reactant)			-0.006942 (-4.4 kcal/mol)

9. Reaction and Reactivity

- Conceive a transition structure
- Optimize the transition structure with keyword opt=TS
- Verify the transition structure by frequency analysis, there must has and only has one negative frequency (a characteristic feature of a transition state)
- Following the reaction path by performing IRC (intrinsic reaction coordinate) for the transition structure (keyword: IRC=rcfc)

9. Reaction 1: $H_2CO \rightarrow H_2 + CO$

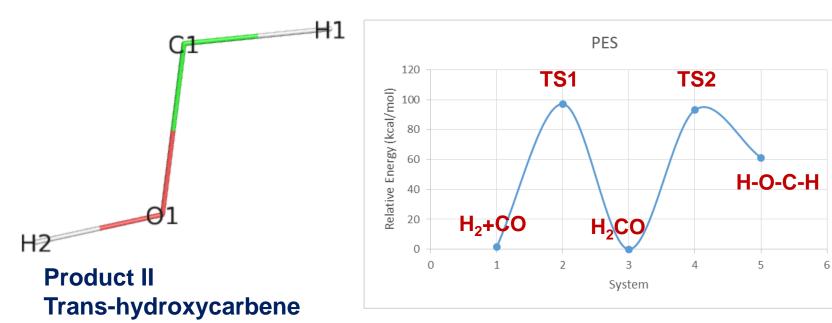
HÌ1

Molecule E (hartree)		Activation Energy (kcal/mol)
TS	-114.012907	
Reactants (H2CO)	-114.167747	97.2 (forward)
Products (H2+CO)	-114.165356	95.7 (reverse)

The trends of geometrical parameter change suggest TS is valid as "IRC I" tends C1 to form product and "IRC II" tends to become reactant.

	TS	IRC (II)	IRC (I)
C1-O1	1.18	1.16	1.18
C1-H1	1.09	2.35	1.08
H1-H2	1.35	0.83	1.40
C1-H2	1.73 1.87 1		1.70
∠01-C1-H1	164.1	137.9	167.3
∠C1-H1-H2	88.9	115.6	85.6

Product Reactant


9. Reaction 2: $H_2CO \rightarrow H$ -C-O-H (trans hydrocarbene)

Molecule	E (hartree)	Activation Energy (kcal/mol)		TS	IRC (II)	IRC (I)
TS	-114.019363		C1-O1	1.32	1.29	1.33
Reactants (H2CO)	-114.022999	100.6 (reverse)	O1-H1	2.03	2.06	2.03
		· · · · ·	O1-H2	1.16	1.55	1.13
Products (trans HCOH)	-114.088123	43.1 (forward)	C1-H1	1.11	1.11	1.11
The trends of		01	С1-Н2	1.28	1.11	1.30
geometrical parame	ter	Un	H1-H2	2.37	2.19	2.39
change suggest TS			∠01-C1-H1	112.9	117.9	112.5
valid as "IRC I" tend	S	₩2	∠01-C1-H2	52.9	80.1	50.7
to form product and			∠H1-C1-H2	165.9	162.0	163.2
"IRC II" tends to		er	∠C1-H1-H2	7.6	9.0	9.1
become reactant.	H1		∠C1-O1-H1	30.2	28.4	30.4
		TS	∠C1-O1-H2	61.4	44.8	63.7

Reactant Product

9. Reaction and Reactivity

Molecule	E (hartree)	Relative Energy (kcal/mol)
Reactant (H2CO)	-114.167747	0
Product 1 (H2+CO)	-114.165356	1.5
Product 2 (H-O-C-H)	-114.070208	61.2
TS (reaction1)	-114.012907	97.2
TS (reaction2)	-114.019363	93.1

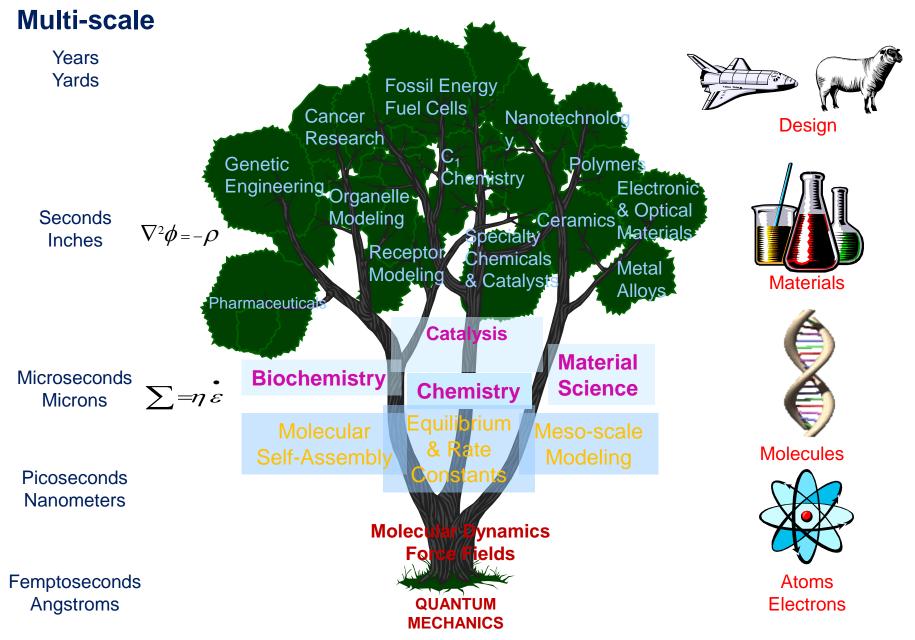
Molecular Mechanics

Nobelpriset 2013

The Nobel Prize in Chemistry 2013

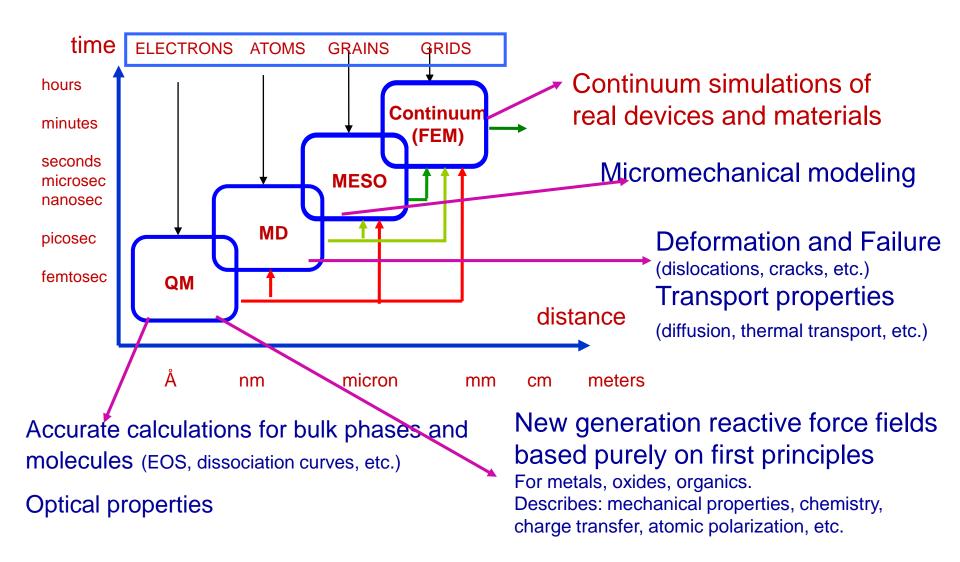
Martin Karplus Université de Strasbourg, France and Harvard University, Cambridge, MA, USA

Michael Levitt Stanford University School of Medicine, CA, USA

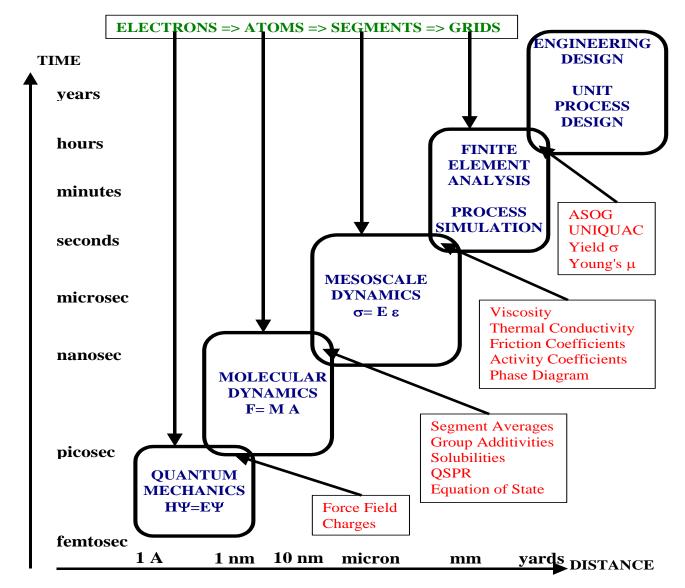

The Nobel

Arieh Warshel University of Southern California, Los Angeles, CA, USA

"För utvecklandet av flerskalemodeller för komplexa kemiska system." "For the development of multiscale models for complex chemical systems."


The Hierarchical Simulations of Chemistry

Hierarchical Simulations Chemistry



© W.A. Goddard III, M. Blanco, 1998

Mechanical Engineer

Chemical Engineer

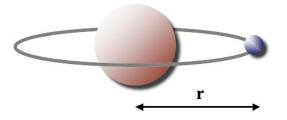
Molecular Mechanics Background

The "mechanical" molecular model was developed out of a need to describe molecular structures and properties in as practical a manner as possible.

The great computational speed of molecular mechanics allows for its use in molecules containing thousands of atoms.

Molecular mechanics methods are based on the following principles:

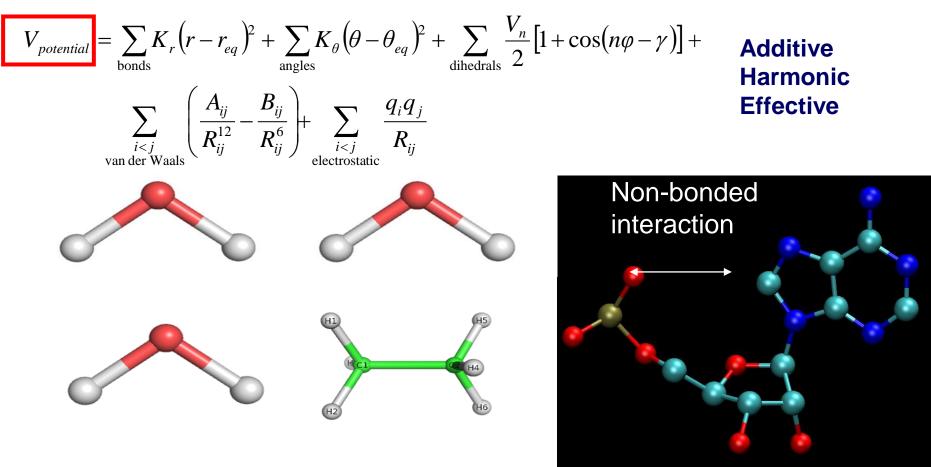
* Nuclei and electrons are lumped into atom-like particles.


* Atom-like particles are spherical (radii obtained from measurements or theory) and have a net charge (obtained from theory).

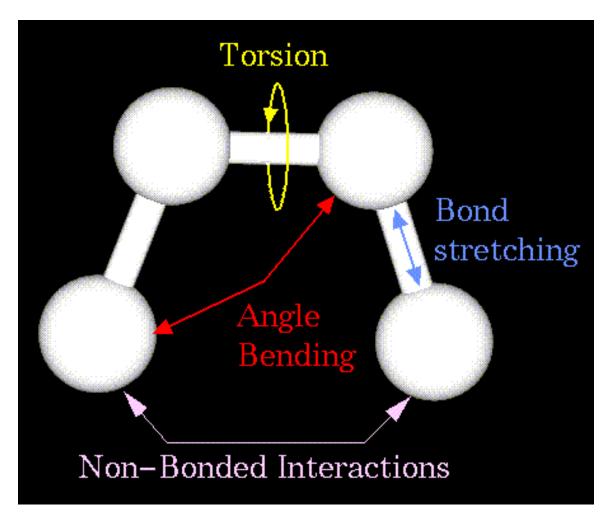
Interactions are based on springs and classical potentials.

Interactions must be preassigned to specific sets of atoms.

Interactions determine the spatial distribution of atom-like particles and their energies.


The Molecular Mechanics

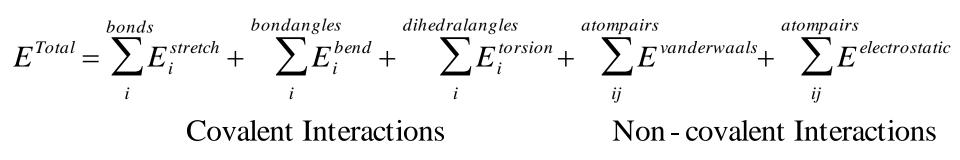
The Born-Oppenheimer Approximation is the Foundation of Molecular Mechanics


Potential Functions

The Anatomy of a Molecular Mechanics Force-Field

The mechanical molecular model considers atoms as spheres and bonds as springs. The mathematics of spring deformation can be used to describe the ability of bonds to stretch, bend, and twist:

Non-bonded atoms (greater than two bonds apart) interact through van der Waals attraction, steric repulsion, and electrostatic attraction/repulsion. These properties are easiest to describe mathematically when atoms are considered as spheres of characteristic radii.


The Anatomy of a Molecular Mechanics Force-Field

The object of molecular mechanics is to predict the **energy** associated with a given conformation of a molecule. However, molecular mechanics energies have no meaning as absolute quantities. Only differences in energy between two or more conformations have meaning. A simple molecular mechanics energy equation is given by:

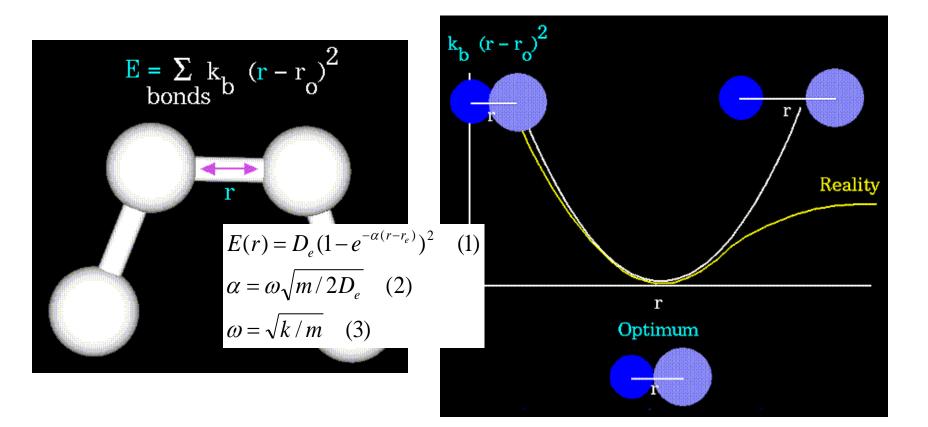
Total Energy =Stretching Energy +Bending Energy +Torsion Energy +Non-Bonded Interaction Energy*

Within the molecular framework, the "total energy" of a molecule is described in terms of a sum of contributions arising from ****** ALL DEVIATIONS****** from "ideal" <u>bond distances</u> (stretch contributions), <u>bond angles</u> (bend

contributions) and <u>dihedral angles</u> (torsion contributions) summarized by

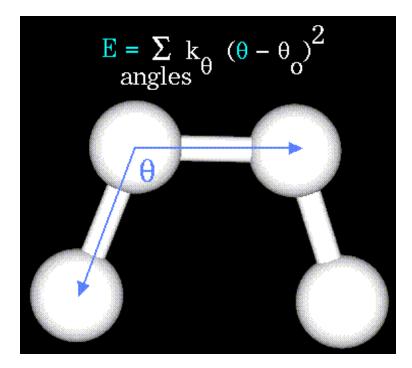
The Anatomy of a Molecular Mechanics Force-Field

These equations together with the data (parameters) required to describe the behavior of different kinds of atoms and bonds, is called a "FORCE FIELD".


The molecular mechanics "FORCE FIELD" relates the motions, and energies of motions of atoms within the molecule. The force field is used to govern how the parts of a molecule relate to each other, that is, how each atom or group of atoms *is affected by its environment*, and how these forces contribute to the structure of the molecule.

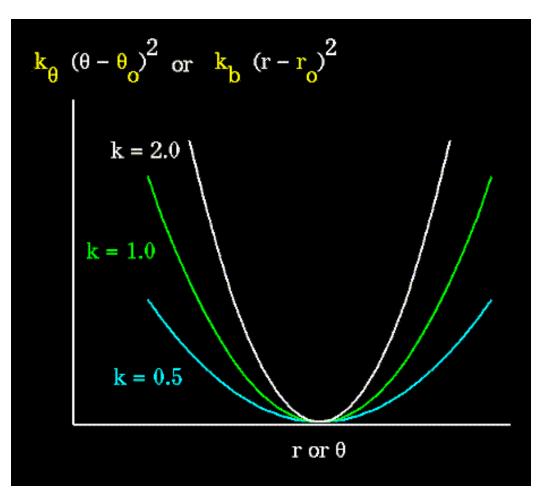
Many different kinds of force-fields have been developed over the years. Some include additional energy terms that describe other kinds of deformations. Some force-fields account for coupling between bending and stretching in adjacent bonds in order to improve the accuracy of the mechanical model.

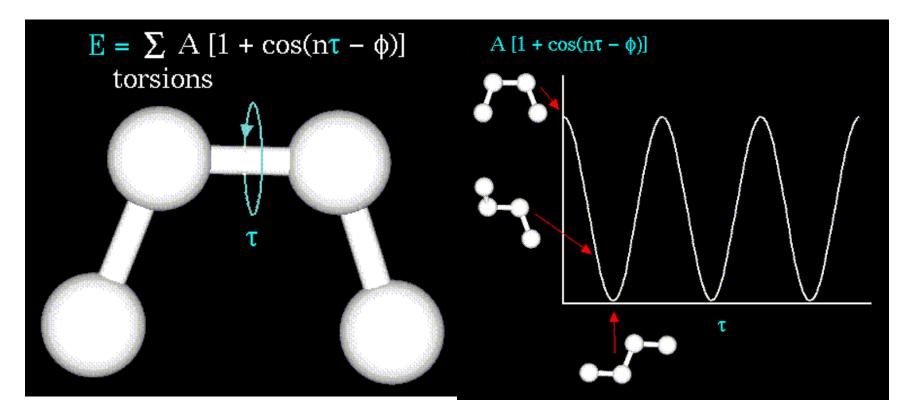
The mathematical form of the energy terms varies from force-field to force-field. The more common forms will be described


STRETCHING ENERGY

•The stretching energy equation is based on Hooke's law. The " k_b " parameter controls the stiffness of the bond spring, while " r_o " defines its equilibrium length. Unique " k_b " and "ro" parameters are assigned to each pair of bonded atoms based on their types (e.g. C-C, C-H, O-C, etc.). This equation estimates the energy associated with vibration about the equilibrium bond length. This is the equation of a parabola, as can be seen in the following plot

BENDING ENERGY

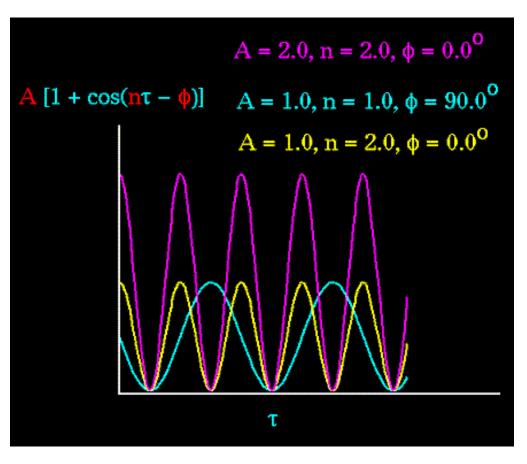

•The bending energy equation is also based on Hooke's law. The "k_{θ}" parameter controls the stiffness of the angle spring, while " θ_o " defines its equilibrium angle. This equation estimates the energy associated with vibration about the equilibrium bond angle


UNIQUE STRETCHING AND BENDING ENERGY

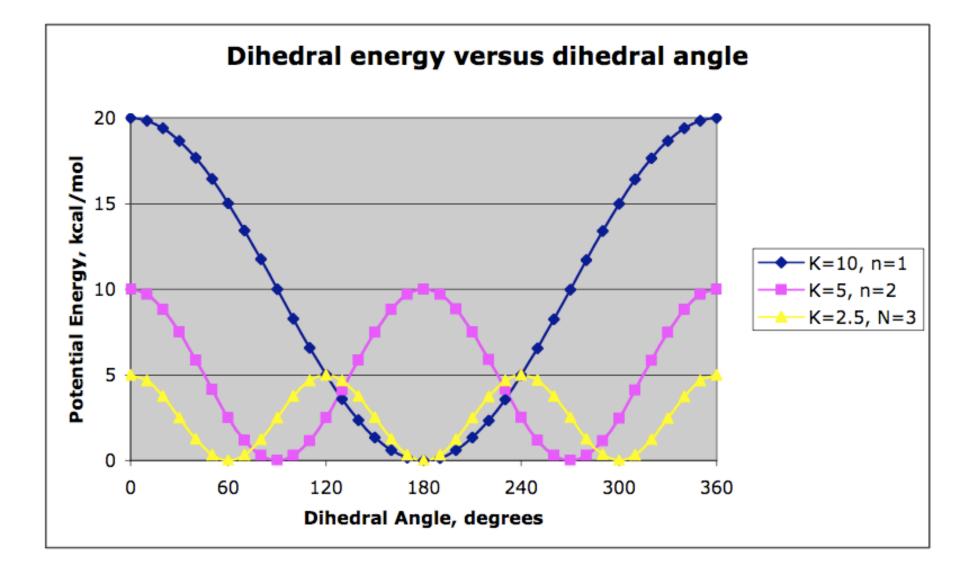
•Unique parameters for angle bending are assigned to each bonded triplet of atoms based on their types (e.g. C-C-C, C-O-C, C-C-H, etc.). The effect of the " k_b " and " k_{θ} " parameters is to broaden or steepen the slope of the parabola. The larger the value of "k", the more energy is required to deform an angle (or bond) from its equilibrium value. Shallow potentials are achieved for "k" values between 0.0 and 1.0. The Hookeian potential is shown in the following plot for three values of "k

TORSIONAL ENERGY

The torsion energy is modeled by a simple periodic function

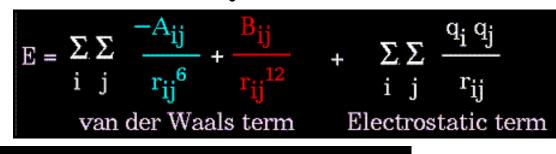


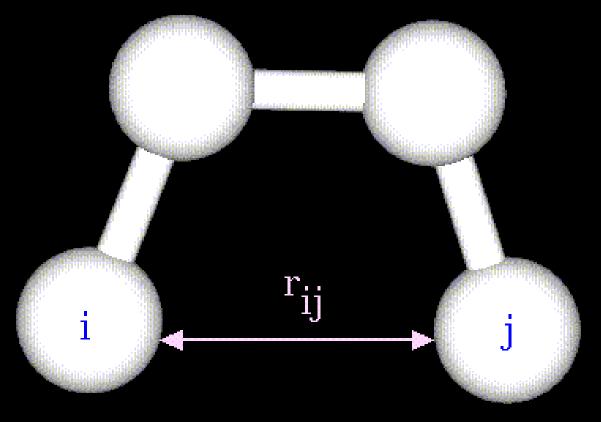
Torsional energy varies during rotation about C-C, C-N and C-O single bonds. The maximum values occur at $t=0^{\circ}$ and represent "eclipsing" interactions between atoms separated by three sigma bonds.


TORSIONAL ENERGY

The torsion energy is modeled by a simple periodic function

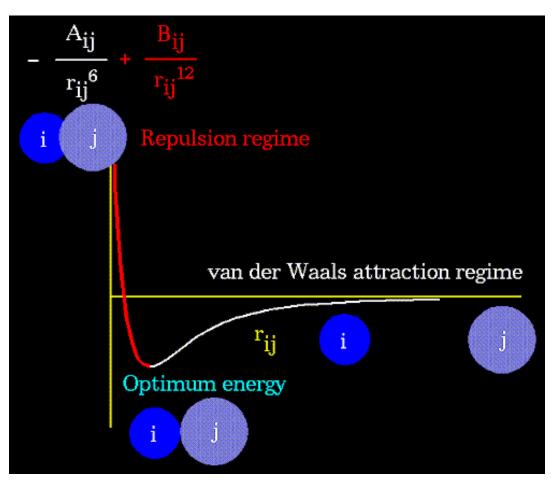
The "A" parameter controls the amplitude of the curve, the n parameter controls its periodicity, and "phi" shifts the entire curve along the rotation angle axis (tau). The parameters are determined from curve fitting. Unique parameters for torsional rotation are assigned to each bonded quartet of atoms based on their types (e.g. C-C-C-C, C-O-C-N, H-C-C-H, etc.). Torsion potentials with three combinations of "A", "n", and "phi" are shown

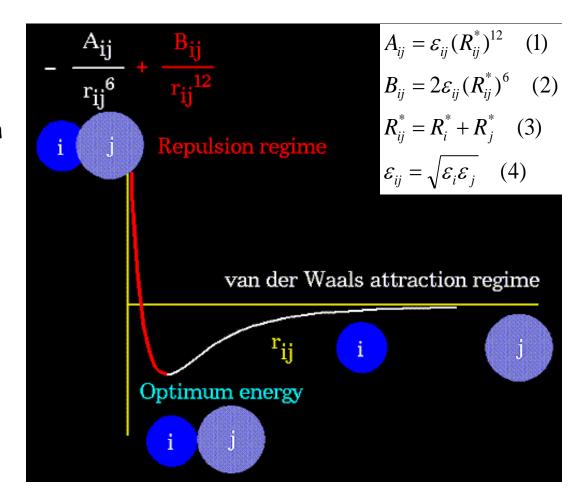

 $V_{dihedral} = K_{\phi}(1 + (\cos n\phi - \delta))$



NON-COVALENT (NON-BONDED) TWO ATOM INTERACIONS

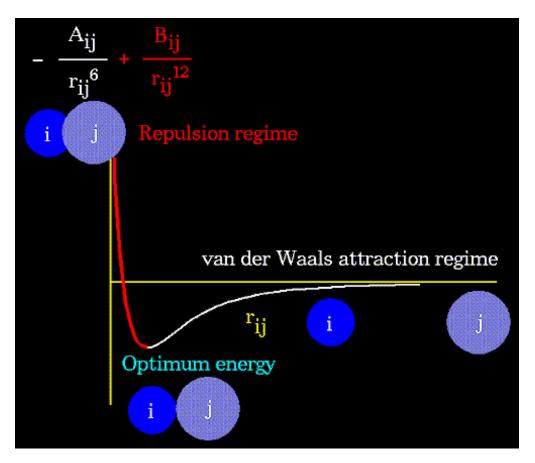
The non-bonded energy represents the pair-wise sum of the energies of all possible interacting non-bonded atoms i and j


The non-bonded energy accounts for van der Waals attraction, repulsion and electrostatic interactions.


VAN DER WAALS TWO ATOM INTERACIONS

The van der Waals attraction occurs at short range, and rapidly dies off as the interacting atoms move apart by a few Angstroms. Repulsion occurs when the distance between interacting atoms becomes even slightly less than the sum of their contact radii. Repulsion is modeled by an equation that is designed to rapidly blow up at close distances (1/r¹² dependency). The energy term that describes attraction/repulsion provides for a smooth transition between these two regimes. These effects are often modeled using a 6-12 equation, as shown in the following plot

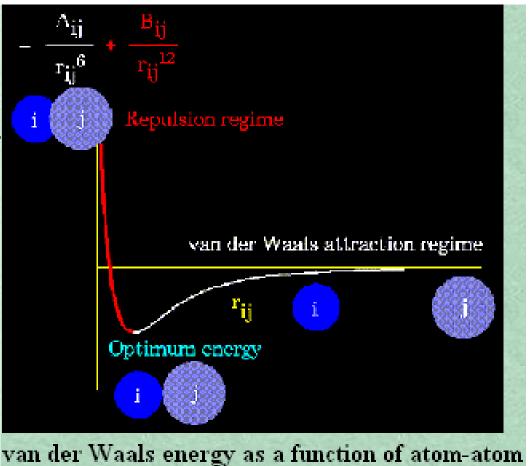
VAN DER WAALS TWO ATOM INTERACIONS


The "A" and "B" parameters control the depth and position (interatomic distance) of the potential energy well for a given pair of non-bonded interacting atoms (e.g. C:C, O:C, O:H, etc.). In effect, "A" determines the degree of "stickiness" of the van der Waals attraction and "B" determines the degree of "hardness" of the atoms (e.g marshmallow-like, billiard balllike, etc.

The "A" parameter can be obtained from atomic polarizability measurements, or it can be calculated quantum mechanically. The "B" parameter is typically derived from crystallographic data so as to reproduce observed average contact distances between different kinds of atoms in crystals of various molecules.

VAN DER WAALS TWO ATOM INTERACIONS

The**The "A" and "B"** parameters control the depth and position (interatomic distance) of the potential energy well for a given pair of non-bonded interacting atoms (e.g. C:C, O:C, O:H, etc.). In effect, "A" determines the degree of "stickiness" of the van der Waals attraction and "B" determines the degree of "hardness" of the atoms (e.g marshmallow-like, billiard balllike, etc.

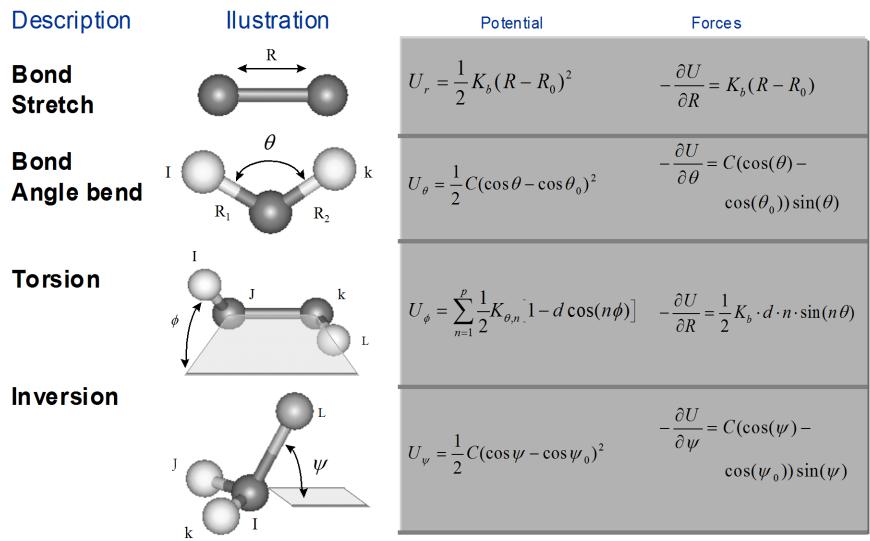


The "A" parameter can be obtained from atomic polarizability measurements, or it can be calculated quantum mechanically. The "B" parameter is typically derived from crystallographic data so as to reproduce observed average contact distances between different kinds of atoms in crystals of various molecules.

Molecular Mechanics Force Fields: Basic Interactions and Their Models

separation.

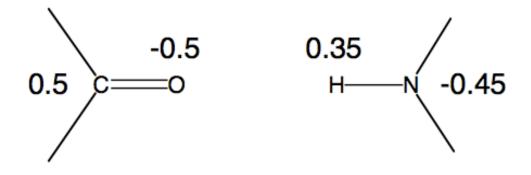
- van der Waals attraction occurs at short range, and rapidly dies off as the interacting atoms move apart.
- Repulsion occurs when the distance between interacting atoms becomes even slightly less than the sum of their contact distance.
- Electrostatic energy dies out slowly and it can affect atoms quite far apart.


Molecular Mechanics Force Fields: Basic Interactions and Their Models

Complete Energy Function:

$$H = \sum_{atoms} \frac{p^2}{2m} + \sum_{bond-stretch} \frac{1}{2} k_r (r - r_{eq})^2 + \sum_{bond-angle-bending} \frac{1}{2} k_{\theta} (\theta - \theta_{eq})^2 + \sum_{bond-rotation} \frac{V_n}{2} [1 + \cos(n\phi - \gamma)] + \sum_{S-bond} [V_0 (1 - e^{-a(r - r_0)})^2 - V_0] + \sum_{S-bond} [V_0 (1 - e^{-a(r - r_0)})^2 - V_0] + \sum_{non-bonded} [\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^6} + \frac{q_i q_j}{\varepsilon_{ij} r_{ij}}]$$

Valence Force Field

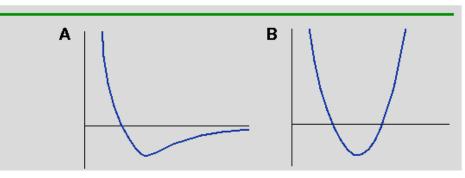

Typical Expressions

Hydrogen Bond Energy

Treatment of hydrogen bonds???

Partial atomic charges

Molecular Mechanics Force Fields: Basic Interactions and Their Models


Types of Hydrogen Bond:

N-H ... O N-H ... N O-H ... N O-H ... O

Can be modeled by

- VdW+electrostatic (AMBER)
- Modified Linard-Jones (CHARM)
- Morse potential (Prohofsky/Chen)

Morse vs Harmonic Bond term:

Popular MMFF

Popular molecular mechanics force fields

Classical

- <u>AMBER</u> (Assisted Model Building and Energy Refinement) widely used for proteins and DNA
- <u>CHARMM</u> originally developed at Harvard, widely used for both small molecules and macromolecules
- <u>CHARMm</u> commercial version of CHARMM, available through <u>Accelrys</u>
- <u>CVFF</u> also broadly used for small molecules and macromolecules
- <u>GROMACS</u> The force field optimized for the package of the same name
- <u>GROMOS</u> A force field that comes as part of the <u>GROMOS</u> (GROningen MOlecular Simulation package), a general-purpose molecular dynamics computer simulation package for the study of biomolecular systems. GROMOS force field (A-version) has been developed for application to aqueous or apolar solutions of proteins, nucleotides and sugars. However, a gas phase version (B-version) for simulation of isolated molecules is also available
- OPLS-aa, OPLS-ua, OPLS-2001, OPLS-2005 Members of the <u>OPLS</u> family of force fields developed by <u>William L. Jorgensen</u> at Yale Department of Chemistry.
- ECEPP/2 free energy force field

Some Available Force Fields:

- CFF: (Consistent Force Field) Warshel, Lifson *et al.*; wide variety of experimental data, software for fitting force field parameters, parametrised to organic compounds, polymers, metals.
- MMFF: derived from both experimental and *ab initio* data, including HF and MP2 energies of torsion sampled structures and conformations.
- MM2/MM3/MM4: Allinger *et al.*; parametrised to heats of formations and small molecule gas phase data (particularly structures and conformational energies). Primarily for geometry optimization and prediction of thermodynamic values and IR spectral. MM3 and MM4 include hydrogen bonding.

Molecular Mechanics Force Fields For Molecular Simulations

- AMBER (Assisted Model Building with Energy Refinement) is the name of both a family of force fields developed for biomolecules by Peter Kollman, and a program for implementing them. AMBER uses harmonic stretches and bends, a cosine function for torsions, a Coulomb electrostatic interaction and a 12-6 Lennard-Jones van der Waals interaction. AMBER has been designed primarily for proteins and nucleic acids.
- CHARMM (Chemistry at HARvard Macromolecular Mechanics) is also a family of force fields and a program. CHARMM has all-atom and united atom variants and is widely used for drug molecules and macromolecules. One variant also includes the TIP3P force field for water, allowing it to be used as an explicit solvent.

Molecular Mechanics, Force Fields

- The GROMOS (GROningen MOlecular Simulation computer program package) force field and package were developed for biomolecular systems at the University of Groningen and at ETH in Zurich.
 GROMOS uses a united atom approach to fragments within biomolecules. There are both aqueous and gas phase versions.
- GROMACS (GROningen MAchine for Chemical Simulations) is the free molecular simulation "engine" that has grown out of GROMOS and can also support most of the other available force fields. Indeed AMBER, CHARM and GROMOS were all primarily developed for molecular dynamics.

Molecular Mechanical Force Field Parameterization

Molecular Mechanical Force Field Parameterization

1. Why is MMFF important?

- Inaccurate forces => non-physical motions
- Central to free energy calculations, molecular docking, etc.

2. What are characteristics of a good MMFF?

- Transferability (not specially tailored to each molecule)
- Accuracy
- Chemical space (wide applicability)

3. Why is it extremely difficult to develop MMFF?

- Force field parameter space is extremely rough
- Large chemical space (10⁶⁰ molecules)
- Many chemical functional groups (> 100)
- Need to model numerous molecular properties at various conditions (temperature, pressure, etc.)

Human intervention is inevitable in force field parameterization.

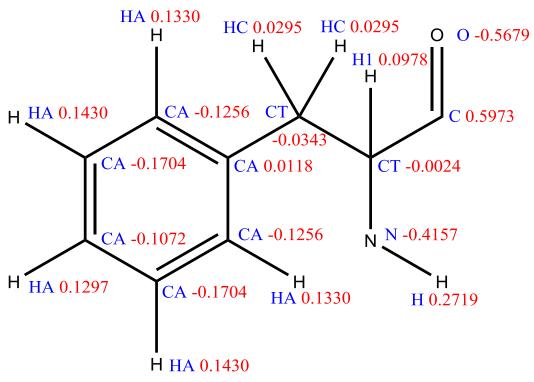
Molecular Mechanics Force Fields: Parameterization

- In addition to the functional form of the potentials, a force field typically defines a set of parameters for each of a number of atom or particle types that correspond to different atoms and bonding patterns in commonly simulated molecules.
- The parameter set includes values for atomic mass and partial charge for individual atoms, and equilibrium bond lengths and angles for pairs, triplets, and quadruplets of bonded atoms.
- Preparation for a molecular dynamics simulation involves assigning an atom or particle type to each atom or particle in the molecules of interest.
- Although many molecular simulations involve biological macromolecules such as proteins, DNA, and RNA, the parameters for given atom types are generally derived from observations on small organic molecules that are more tractable for experimental study and quantum calculation.

Diagram of intramolecular energy terms

$$V_{bond} = K_b (b - b_o)^2$$

$$(1)$$

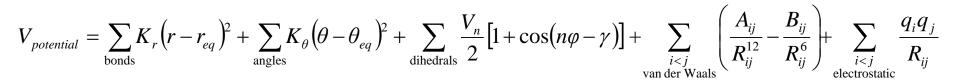

$$V_{dihedral} = K_{\phi} (1 + (\cos n\phi - \delta))$$

$$V_{angle} = K_{\theta} (\theta - \theta_o)^2$$

$$(3)$$

$$(4)$$

AMBER Force Field For Phenylalanine Residue


Atom Types: 9 N H CT H1 HC HA C O

Bond Parameters (A-B): 10 For example CA-HA $k_r = 367.0, r_{eq} = 1.080$

Angle Parameters (A-B-C): 15 For example CA-CA-CA $k_{\theta} = 63.0, \ \theta_{eq} = 120.0$

Dihedral Parameters (A-B-C-D): 21 For example CA-CA-CA-CA $V_2 = 3.625, n = 2, \gamma = 180.0$

A, B, C and D are atom types.

Molecular Mechanics Force Fields: Basic Interactions and Their Models

Concept of energy scale is Important for molecular Modeling

Energy Term	Scale (kcal/mol)
Bond stretching	100
Angle Bending	10
Torsion	1
Hydrogen Bond	2
Electrostatic interaction	0.5
Van der Waals	0.1

Molecular Mechanics Force Fields: Basic Interactions and Their Models

Concept of energy scale is Important for molecular modeling

Average bond energies in units of kJ/mol

(1kJ/mol=0.239 kcal/mol):

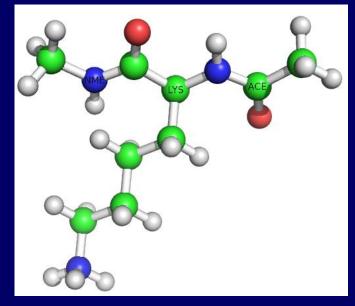
A. Single bonds:

	S	P	0	Ν	С	H
H	339	318	463	389	414	436
С	259	264	351	293	347	
N		209	201	159		
0		351	138			
P	230	213				
S	213					

B. Multiple b	onds:		
N=N	418	C=C	611
N <u>=</u> N	946	C≡C	837
C=N	615	$C=O(in CO_2)$	803
C≞N	891	C=O (as in H ₂ C=O)	745
O=O	498	C=O	1075

An iterative approach is required to obtain self-consistent parameters

Intramolecular


Intermolecular

The nonbond/intermolecular parameters will impact the resulting geometries, vibrations and conformational energies. Thus, it is necessary to apply an iterative approach

Philosophy of AMBER Force Field Parameterization

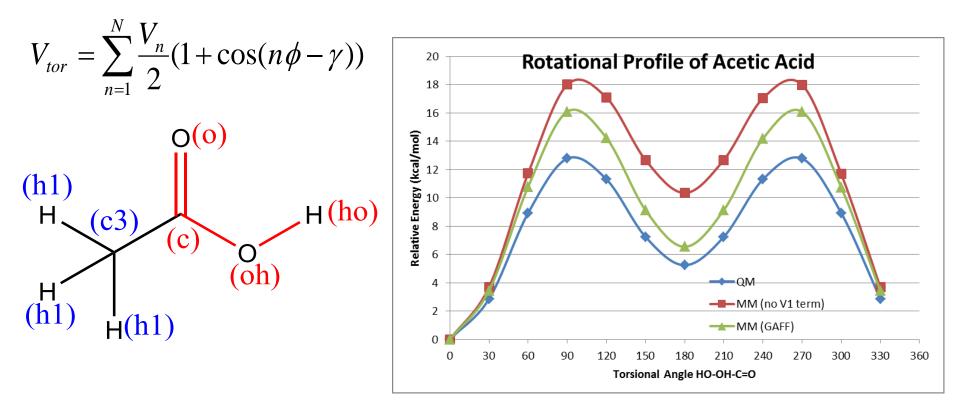
- Model Compounds
 Building blocks of macromolecules
 Small, representative
- Reference Data
 QM data: optimized geometries, conformational energies, interaction energies, electric moments, electrostatic potentials, electron densities

Experimental data: crystal/NMR structures, vibrational frequencies, pure liquid/solid properties, solvation free energies, NMR data such as J-J couplings, order parameters

NME-LYS-ACE

Strategies of AMBER Force Field Parameterization

1. Partial Charge


HF/6-31G* RESP (derive charges to reproduce ab initio ESP)

2. Van der Waals

Reproduce bulk properties, such as density and heat of vaporization, hydration free energies

- 3. Bond length and bond angle parameters Experiments or high-level *ab initio* calculations
- Torsional angle parameters
 Experimental or high-level *ab initio* relative energies and rotational profiles

Torsional Angle Parameterization: An Example

Torsional parameter to be optimized: **ho-oh-c=o**

 $V_2 = 2.3, \ \gamma = 180$ $V_1 = 1.9, \ \gamma = 0.0$ Density at 25 °C:

Exp: 1.0446 GAFF: 1.1282 GAFF2: 1.0635

Molecular Mechanics Force Fields: Atom Types

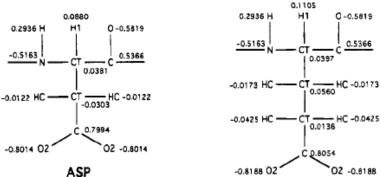
atom	type	description			
carbon	CT	any sp ³ carbon			
	С	any carbonyl sp ² carbon			
	CA	any aromatic sp^2 carbon and (C ϵ of Arg)			
	CM	any sp ² carbon, double bonded			
	CC	sp ² aromatic in 5-membered ring with one	nitrogen	Ν	sp ² nitrogen in amides
		substituent + next to nitrogen (C γ in His)	-	NA	sp ² nitrogen in aromatic rings with hydrogen
	CV	sp ² aromatic in 5-membered ring next to carbon			attached (e.g. protonated His, Gua, Trp)
		and lone pair nitrogen (e.g. $C\delta$ in His (δ))		NB	sp ² nitrogen in 5-membered ring with lone pair
	CW	sp ² aromatic in 5-membered ring next to carbon			(e.g. N7 in purines)
		and NH (e.g. C δ in His (ϵ) and in Trp)		NC	sp ² nitrogen in 6-membered ring with lone pair
	CR	sp ² aromatic in 5-membered ring next to			(e.g. N3 in purines)
		two nitrogens (Cy and C ϵ in His)		N*	sp ² nitrogen in 5-membered ring with carbon
	CB	sp ² aromatic at junction of 5- and 6-membered			substituent (in purine nucleosides)
		rings (Cô in Trp) and both junction atoms		N2	sp ² nitrogen of aromatic amines and
		in Ade and Gua			guanidinium ions
	C*	sp ² aromatic in 5-membered ring next to		N3	sp ³ nitrogen
		two carbons (e.g. $C\gamma$ in Trp)	oxygen	OW	sp ³ oxygen in TIP3P water
	CN	sp ² junction between 5- and 6-membered rings		OH	sp ³ oxygen in alcohols, tyrosine, and
		and bonded to CH and NH (C ϵ in Trp)			protonated carboxylic acids
	CK	sp ² carbon in 5-membered aromatic between N		OS	sp ³ oxygen in ethers
		and N-R (C8 in purines)		0	sp ² oxygen in amides
	CQ	sp ² carbon in 6-membered ring between		02	sp ² oxygen in anionic acids
		lone pair nitrogens (e.g. C2 in purines)	sulfur	S	sulfur in methionine and cysteine
				ŜН	sulfur in cysteine
			phosphorus	P	phosphorus in phosphates
I AMB	ER: J	. Am. Chem. Soc. 117. 5179-5197	P-100Prior 40	-	Price

AMBER: J. Am. Chem. Soc. 117, 5179-5197

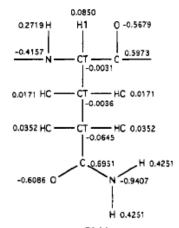
56

Molecular Mechanics Force Fields: Atom Types and Standard Parameters

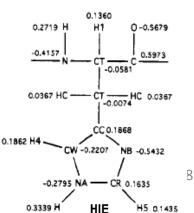
atom	type	description			
hydrogen	H	H attached to N	Table 2. Standardized Parar	meters for Scaling Al	gorithms
	HW HO	H in TIP3P water H in alcohols and acids	bond	req ^a	K _r ^b
 HS H attached to sulfur HA H attached to aromatic carbon HC H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with one electron-withdrawing substituent H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with 	HS HA	IS H attached to sulfur IA H attached to aromatic carbon	pure C-C pure C-C pure C-N	1.507 ^c 1.336 ^e 1.449 ^g	317 ^d 570 ^f 337 ^h
	no electron-withdrawing substituents H attached to aliphatic carbon with	pure C=N torsion	1.273 ⁱ	570 ⁷	
	H attached to aliphatic carbon with	pure X-C-C-X	1.507 ^c	0.04	
	H attached to aliphatic carbon with three electron-withdrawing substituents	partial X-C=C-X pure X-C=C-X	1.397 ^m 1.336 ^e	14.5 ⁿ 30.0 ^o	
	HP	H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH ₃ ⁺ of lysine)	pure X-C-N-X partial X-C=N-X pure X-C=N-X	1.449 ⁸ 1.335 ⁹ 1.273 ¹	0.0^{p} 10.0 ^r 30.0 ^s
	H4	H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy)	^{<i>a</i>} In Å, ^{<i>b</i>} In kcal/(mol Å ²), ^{<i>c</i>} ^{<i>d</i>} Value taken from MM2, ref 32), ^{<i>f</i>} Default from NMA nor	2. " Microwave data	from propene (ref
Н5	Н5	H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade and Gua and H2 of Ade)	constant & Renedetti structura	al data (ref 33). ^h Va A. ⁱ Microwave data fr ootnote f. ^k In kcal/m le bond. ^m Structural es analysis of benze	alue derived from om methylenimine ol. ¹ Assumed free data from benzene ne. ^o Approximate
AMB	ER: 、	J. Am. Chem. Soc. 117, 5179-5197	free rotation about a pure singl		P

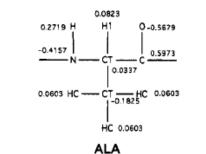

(ref 33). ' Reference 35. ' Calculated rotational barrier in methylenimine

is 57.5 kcal/mol (see ref 36).


0.2936 H

-0.5163


-0.8014 O2



GLN

0.0869

н1

-0.0597

0.1303

-0.0430

-0.0660

HC 0.0186

ILE

0.2719 H

-0.3204

CT

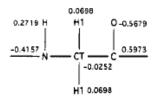
----- HC 0.0236

0.0186

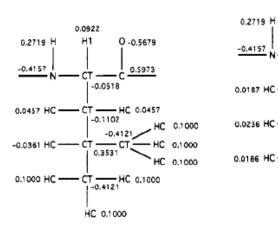
H1 0.0976

— нс

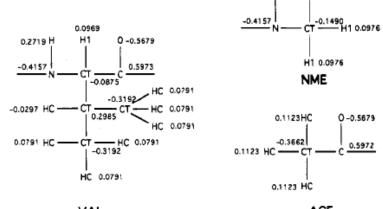
0-0.5679

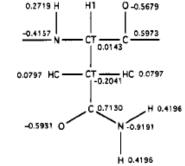

0.5973

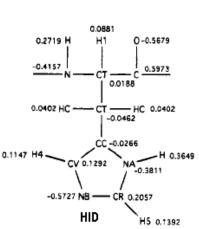
HC 0.0862

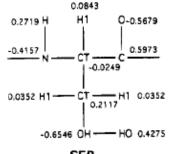

0.0882

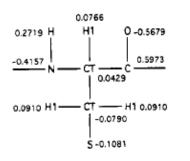
0.0882


0.5972

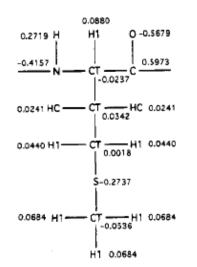

GLY

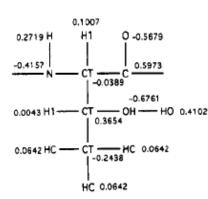




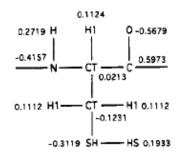

0.1048

ASN

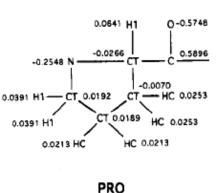


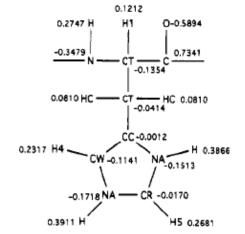


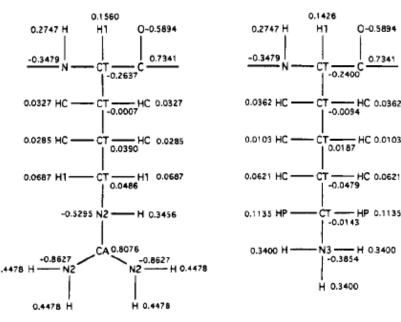
SER

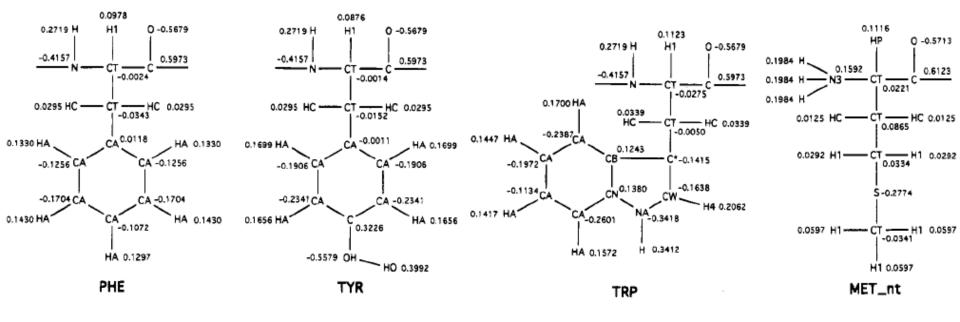


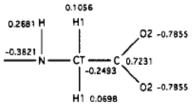
CYX



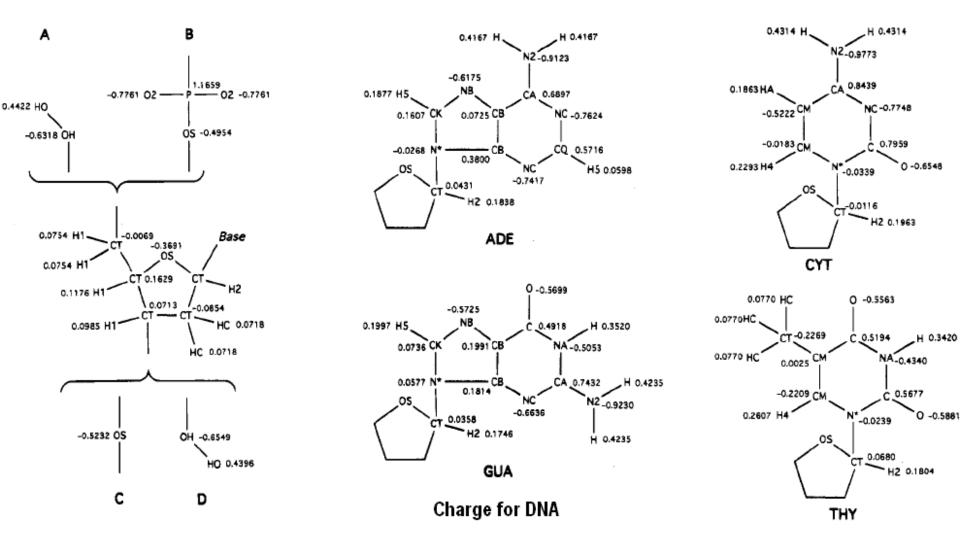


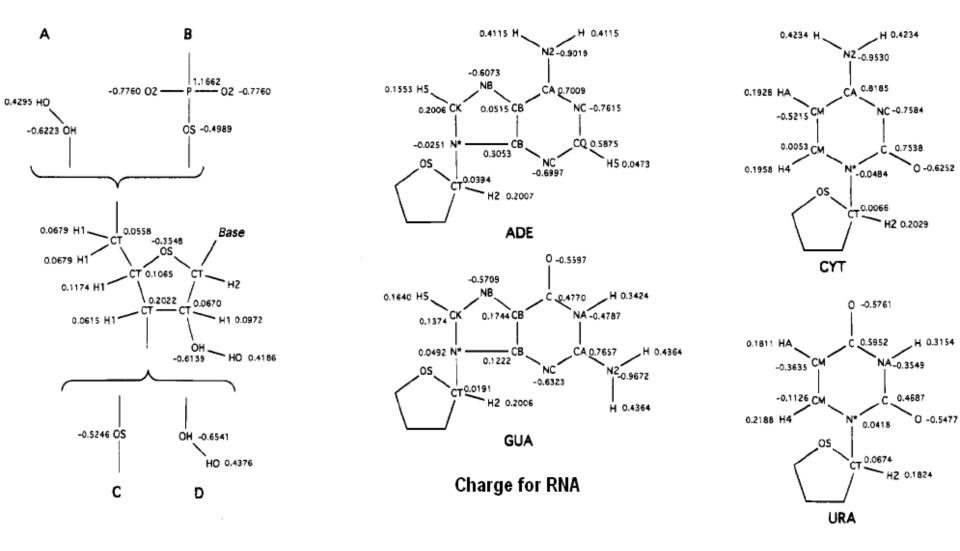



HIP



ARG


LYS


MET

GLY_ct

Molecular Mechanics Force Fields: Bond Parameters

	Bond Parameters												
bond	K ^b	r _{eq} ^c	bond	K _r ^b	r _{eq} ^c	bond	$K_{\rm r}^{b}$	r_{eq}^{c}	bond	K_r^b	r_{eq}^{c}		
C-CA	469.0	1.409	CAHA	367.0	1.080	CM-HA	367.0	1.080	CT-S	227.0	1.810		
C-CB	447.0	1.419	CA-N2	481.0	1.340	CMN*	448.0	1.365	CT-SH	237.0	1.810		
C-CM	410.0	1.444	CA-NA	427.0	1.381	CN-NA	428.0	1.380	CV-H4	367.0	1.080		
C-CT	317.0	1.522	CA-NC	483.0	1.339	CQ-H5	367.0	1.080	CV-NB	410.0	1.394		
C-N	490.0	1.335	CB-CB	520.0	1.370	CQ-NC	502.0	1.324	CW-H4	367.0	1.080		
C-N*	424.0	1.383	CB-CN	447.0	1.419	CR-H5	367.0	1.080	CW-NA	427.0	1.381		
C-NA	418.0	1.388	CB-N*	436.0	1.374	CR-NA	477.0	1.343	H-N	434.0	1.010		
C-NC	457.0	1.358	CB-NB	414.0	1.391	CR-NB	488.0	1.335	H-N*	434.0	1.010		
C-0	570.0	1.229	CB-NC	461.0	1.354	CT-CT	310.0	1.526	H-N2	434.0	1.010		
C-02	656.0	1.250	CC-CT	317.0	1.504	CT-F	367.0	1.380	H-N3	434.0	1.010		
C-OH	450.0	1.364	CC-CV	512.0	1.375	CT-H1	340.0	1.090	H-NA	434.0	1.010		
C*-CB	388.0	1.459	CC-CW	518.0	1.371	CT-H2	340.0	1.090	но-он	553.0	0.960		
C*-CT	317.0	1.495	CC-NA	422.0	1.385	CT-H3	340.0	1.090	HO-OS	553.0	0.960		
C*-CW	546.0	1.352	CC-NB	410.0	1.394	CT-HC	340.0	1.090	HS-SH	274.0	1.336		
C*-HC	367.0	1.080	CK-H5	367.0	1.080	CT-HP	340.0	1.090	O2-P	525.0	1.480		
CA-CA	469.0	1.400	CK-N*	440.0	1.371	CT-N	337.0	1.449	OH-P	230.0	1.610		
CA-CB	469.0	1.404	CK-NB	529.0	1.304	CT-N*	337.0	1.475	OS-P	230.0	1.610		
CA-CM	427.0	1.433	CM-CM	549.0	1.350	CT-N2	337.0	1.463	OW-HW	553.0	0.9572		
CA-CN	469.0	1.400	CM-CT	317.0	1.510	CT-N3	367.0	1.471	S-S	166.0	2.038		
CA-CT	317.0	1.510	CM-H4	367.0	1.080	CT-OH	320.0	1.410					
CA-H4	367.0	1.080	CM-H5	367.0	1.080	CT-OS	320.0	1.410					

Molecular Mechanics Force Fields: Bond Parameters

angle	K_{θ}^{d}	$\theta_{eq}{}^{e}$	angle	$K_{\theta}{}^{d}$	$ heta_{ m eq}^{~ m e}$	angle	$K_{\theta}{}^{d}$	$ heta_{ ext{eq}}^{e}$	angle	K_{θ}^{d}	$ heta_{\mathrm{eq}}^{\ell}$
C-CA-CA	63.0	120.00	CA-CT-HC	50.0	109.50	CN-NA-H	30.0	123.10	H1-CT-N2	50.0	109.50
C-CA-HA	35.0	120.00	CA-N2-CT	50.0	123.20	CR-NA-CW	70.0	120.00	H1-CT-OH	50.0	109.50
C-CB-CB	63.0	119.20	CA-N2-H	35.0	120.00	CR-NA-H	30.0	120.00	H1-CT-OS	50.0	109.50
C-CB-NB	70.0	130.00	CA-NA-H	30.0	118.00	CR-NB-CV	70.0	117.00	H1-CT-S	50.0	109.50
C-CM-CM	63.0	120.70	CA-NC-CB	70.0	112.20	CT-C-N	70.0	116.60	H1-CT-SH	50.0	109.50
C-CM-CT	70.0	119.70	CA-NC-CQ	70.0	118.60	CT-C-O	80.0	120.40	H2-CT-H2	35.0	109.50
C-CM-H4	35.0	119.70	CB-C-NA	70.0	111.30	CT-C-O2	70.0	117.00	H2-CT-N*	50.0	109.50
C-CM-HA	35.0	119.70	CB-C-O	80.0	128.80	CT-C*-CW	70.0	125.00	H2-CT-OS	50.0	109.50
C-CT-CT	63.0	111.10	CB-C*-CT	70.0	128.60	CT-CC-CV	70.0	120.00	H4-CM-N*	35.0	119.10
C-CT-H1	50.0	109.50	CB-C*-CW	63.0	106.40	CT-CC-CW	70.0	120.00	H4-CV-NB	35.0	120.00
C-CT-HC	50.0	109.50	CB-CA-H4	35.0	120.00	CT-CC-NA	70.0	120.00	H4-CW-NA	35.0	120.00
C-CT-HP	50.0	109.50	CB-CA-HA	35.0	120.00	CT-CC-NB	70.0	120.00	H5-CK-N*	35.0	123.05
C-CT-N	63.0	110.10	CB-CA-N2	70.0	123.50	CT-CT-CT	40.0	109.50	H5-CK-NB	35.0	123.05
C-CT-N3	80.0	111.20	CB-CA-NC	70.0	117.30	CT-CT-H1	50.0	109.50	H5-CQ-NC	35.0	115.45
C-N-CT	50.0	121.90	CB-CB-N*	70.0	106.20	CT-CT-H2	50.0	109.50	H5-CR-NA	35.0	120.00
C-N-H	30.0	120.00	CB-CB-NB	70.0	110.40	CT-CT-HC	50.0	109.50	H5-CR-NB	35.0	120.00
C-N*-CM	70.0	121.60	CB-CB-NC	70.0	127.70	CT-CT-HP	50.0	109.50	HC-CT-HC	35.0	109.50
C-N*-CT	70.0	117.60	CB-CN-NA	70.0	104.40	CT-CT-N	80.0	109.70	HO-OH-P	45.0	108.50
C-N*-H	30.0	119.20	CB-N*-CK	70.0	105.40	CT-CT-N*	50.0	109.50	HP-CT-HP	35.0	109.50
C-NA-C	70.0	126.40	CB-N*-CT	70.0	125.80	CT-CT-N2	80.0	111.20	HP-CT-N3	50.0	109.50
C-NA-CA	70.0	125.20	CB-N*-H	30.0	125.80	CT-CT-N3	80.0	111.20	HS-SH-HS	35.0	92.07
C-NA-H	30.0	116.80	CB-NB-CK	70.0	103.80	CT-CT-OH	50.0	109.50	HW-OW-HW	100.0	104.52
C-NC-CA	70.0	120.50	CB-NC-CQ	70.0	111.00	CT-CT-OS	50.0	109.50	N-C-O	80.0	122.90
C-OH-HO	35.0	113.00	CC-CT-CT	63.0	113.10	CT-CT-S	50.0	114.70	N*-C-NA	70.0	115.40
C*-CB-CA	63.0	134.90	CC-CT-HC	50.0	109.50	CT-CT-SH	50.0	108.60	N*-C-NC	70.0	118.60
C*-CB-CN	63.0	108.80	CC-CV-H4	35.0	120.00	CT-N-CT	50.0	118.00	N*-C-0	80.0	120.90
C*-CT-CT	63.0	115.60	CC-CV-NB	70.0	120.00	CT-N-H	30.0	118.04	N*-CB-NC	70.0	126.20
C*-CT-HC	50.0	109.50	CC-CW-H4	35.0	120.00	CT-N2-H	35.0	118.40	N*-CK-NB	70.0	113.90
C*-CW-H4	35.0	120.00	CC-CW-NA	70.0	120.00	CT-N3-H	50.0	109.50	N*-CT-OS	50.0	109.50
C*-CW-NA	70.0	108.70	CC-NA-CR	70.0	120.00	CT-OH-HO	55.0	108.50	N2-CA-N2	70.0	120.00
CA-C-CA	63.0	120.00	CC-NA-H	30.0	120.00	CT-OS-CT	60.0	109.50	N2-CA-NA	70.0	116.00
CA-C-OH	70.0	120.00	CC-NB-CR	70.0	117.00	CT-OS-P	100.0	120.50	N2-CA-NC	70.0	119.30
CA-CA-CA	63.0	120.00	CK-N*-CT	70.0	128.80	CT-S-CT	62.0	98.90	NA-C-O	80.0	120.60
CA-CA-CB	63.0	120.00	CK-N*-H	30.0	128.80	CT-S-S	68.0	103.70	NA-CA-NC	70.0	123.30
CA-CA-CN	63.0	120.00	CM-C-NA	70.0	114.10	CT-SH-HS	43.0	96.00	NA-CR-NA	70.0	120.00
CA-CA-CT	70.0	120.00	CM-C-O	80.0	125.30	CV-CC-NA	70.0	120.00	NA-CR-NB	70.0	120.00
CA-CA-H4	35.0	120.00	CM-CA-N2	70.0	120.10	CW-CC-NA	70.0	120.00	NC-C-O	80.0	122.50
CA-CA-HA	35.0	120.00	CM-CA-NC	70.0	121.50	CW-CC-NB	70.0	120.00	NC-CQ-NC	70.0	129.10
CA-CB-CB	63.0	117.30	CM-CM-CT	70.0	119.70	CW-NA-H	30.0	120.00	0-C-0	80.0	126.00
CA-CB-CN	63.0	116.20	CM-CM-H4	35.0	119.70	F-CT-F	77.0	109.10	O2-C-O2	80.0	126.00
CA-CB-NB	70.0	132.40	CM-CM-HA	35.0	119.70	F-CT-H1	35.0	109.50	O2-P-O2	140.0	119.90
CA-CM-CM	63.0	117.00	CM-CM-N*	70.0	121.20	H-N-H	35.0	120.00	O2-P-OH	45.0	108.23

55 x 11.13 in <

64

· · · · · · · · · · · · · · · · · · ·					u Parameters				
torsion	no. of paths ^f	$V_n/2^g$	γ^h	ni	torsion	no. of paths	$V_n/2^g$	γ ^h	n ⁱ
X-C-CA-X	4	14.50	180.0	2.0	X-CT-OH-X	3	0.50	0.0	3.0
Х-С-СВ-Х	4	12.00	180.0	2.0	X-CT-OS-X	3	1.15	0.0	3.0
X-C-CM-X	4	8.70	80.0	2.0	X-CT-S-X	3	1.00	0.0	3.0
X-C-CT-X	4	0.00	0.0	2.0	X-CT-SH-X	3	0.75	0.0	3.0
X-C-N-X	4	10.00	180.0	2.0	X-CV-NB-X	2	4.80	180.0	2.0
X-C-N*-X	4	5.80	180.0	2.0	X-CW-NA-X	4	6.00	180.0	2.0
X-C-NA-X	4	5.40	180.0	2.0	X-OH-P-X	3	0.75	0.0	3.0
X-C-NC-X	2	8.00	180.0	2.0	X-OS-P-X	3	0.75	0.0	3.0
X-C-OH-X	2	1.80	180.0	2.0	C-N-CT-C	1	0.0	0.0	-4.0
X-C*-CB-X	4	6.70	180.0	2.0	C-N-CT-C	1	0.0	180.0	-3.0
X-C*-CT-X	6	0.00	0.0	2.0	C-N-CT-C	1	0.20	180.0	-2.0
X-C*-CW-X	4	26.10	180.0	2.0	C-N-CT-C	1	0.00	180.0	1.0
X–CA–CA–X	4	14.50	180.0	2.0	CT-CT-C-N	1	0.100	0.0	-4.0
X-CA-CB-X	4	14.00	180.0	2.0	CT-CT-C-N	1	0.000	0.0	-3.0
X-CA-CM-X	4	10.20	180.0	2.0	CT-CT-C-N	1	0.07	0.0	-2.0
X-CA-CN-X	4	14.50	180.0	2.0	CT-CT-C-N	1	0.000	180.0	1.0
X-CA-CT-X	6	0.00	0.0	2.0	CT-CT-N-C	1	0.50	180.0	-4.0
X-CA-N2-X	4	9.60	180.0	2.0	CT-CT-N-C	1	0.15	180.0	-3.0
X-CA-NA-X	4	6.00	180.0	2.0	CT-CT-N-C	1	0.00	180.0	-2.0
X-CA-NC-X	2	9.60	180.0	2.0	CT-CT-N-C	1	0.53	0.0	1.0
X-CB-CB-X	4	21.80	180.0	2.0	CT-CT-OS-CT	1	0.383	0.0	-3.0
X-CB-CN-X	4	12.00	180.0	2.0	CT-CT-OS-CT	1	0.1	180.0	2.0
X-CB-N*-X	4	6.60	180.0	2.0	CT-S-S-CT	1	0.60	0.0	3.0
X-CB-NB-X	2	5.10	180.0	2.0	CT-S-S-CT	1	3.50	0.0	-2.0
X-CB-NC-X	2	8.30	180.0	2.0	H-N-C-O	1	2.50	180.0	-2.0
X-CC-CT-X	6	0.00	0.0	2.0	H-N-C-O	1	2.00	0.0	1.0
X-CC-CV-X	4	20.60	180.0	2.0	N-CT-C-N	1	0.40	180.0	-4.0
X-CC-CW-X	4	21.50	180.0	2.0	N-CT-C-N	1	0.0	0.0	-3.0
X-CC-NA-X	4	5.60	180.0	2.0	N-CT-C-N	1	1.35	180.0	-2.0
X-CC-NB-X	2	4.80	180.0	2.0	N-CT-C-N	1	0.75	180.0	1.0
X-CK-N*-X	4	6.80	180.0	2.0	OH-CT-CT-OH	1	0.144	0.0	-3.0
X-CK-NB-X	2	20.00	180.0	2.0	OH-CT-CT-OH	1	1.00	0.0	2.0
X-CM-CM-X	4	26.60	180.0	2.0	OH-P-OS-CT	1	0.25	0.0	-3.0
X-CM-CT-X	6	0.00	0.0	3.0	OH-P-OS-CT	1	1.20	0.0	2.0
X-CM-N*-X	4	7.40	180.0	2.0	OS-CT-CT-OH	1	0.144	0.0	-3.0
X-CN-NA-X	4	6.10	180.0	2.0	OS-CT-CT-OH	1	1.00	0.0	2.0
X-CQ-NC-X	2	13.60	180.0	2.0	OS-CT-CT-OS	1	0.144	0.0	-3.0
X-CR-NA-X	4	9.30	180.0	2.0	OS-CT-CT-OS	1	1.00	0.0	2.0
X-CR-NB-X	2	10.00	180.0	2.0	OS-CT-N*-CK	1	0.50	180.0	-2.0
X-CT-CT-X	9	1.40	0.0	3.0	OS-CT-N*-CK	1	2.50	0.0	1.0

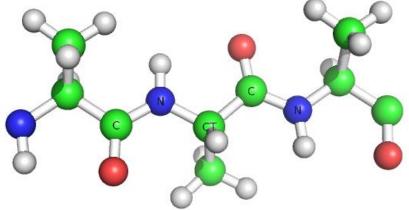
Molecular Mechanics Force Fields: Bond Parameters

65

Molecular Mechanics Force Fields: Bond and Non-Bonded Parameters

	Improper Torsions											
torsion	$V_n/2^s$	γ ^h	n ⁱ	torsion	$V_n/2^g$	γ^h	n ⁱ	torsion	$V_n/2^g$	γ^{h}	n ⁱ	
X-CT-N-CT	1.0	180.0	2.0	X-X-CQ-H5	1.1	180.0	2.0	CK-CB-N*-CT	1.0	180.0	2.0	
X–N2–CA–N2	10.5	180.0	2.0	X-X-CR-H5	1.1	180.0	2.0	CM-C-CM-CT	1.1	180.0	2.0	
X-02-C-02	10.5	180.0	2.0	X-X-CV-H4	1.1	180.0	2.0	CM-C-N*-CT	1.0	180.0	2.0	
Х-Х-С-О	10.5	180.0	2.0	X-X-CW-H4	1.1	180.0	2.0	CT-CM-CM-C	1.1	180.0	2.0	
Х-Х-СА-Н4	1.1	180.0	2.0	X-X-N-H	1.0	180.0	2.0	CW-CB-C*-CT	1.1	180.0	2.0	
X–X–CA–H5	1.1	180.0	2.0	X-X-N2-H	1.0	180.0	2.0	NC-CM-CA-N2	1.1	180.0	2.0	
Х-Х-СА-НА	1.1	180.0	2.0	X-X-NA-H	1.0	180.0	2.0	NA-CV-CC-CT	1.1	180.0	2.0	
Х-Х-СК-Н5	1.1	180.0	2.0	CA-CA-C-OH	1.1	180.0	2.0	NA-CW-CC-CT	1.1	180.0	2.0	
Х-Х-СМ-Н4	1.1	180.0	2.0	CA-CA-CA-CT	1.1	180.0	2.0	NA-NC-CA-N2	1.1	180.0	2.0	
Х-Х-СМ-НА	1.1	180.0	2.0	CB-NC-CA-N2	1.1	180.0	2.0	NB-CW-CC-CT	1.1	180.0	2.0	
				•• • •		_						

Van der Waals Parameters


atom type	R * ^j	€ ^k	atom type	<i>R*^j</i>	ϵ^{k}	atom type	R* ^j	ϵ^{k}	atom type	R * ^j	€ ^k
\mathbf{C}^{l}	1.9080	0.0860	H2	1.2870	0.0157	HS	0.6000	0.0157	O2	1.6612	0.2100
CA	1.9080	0.0860	H3	1.1870	0.0157	HW	0.0000	0.0000	OH	1.7210	0.2104
CM	1.9080	0.0860	H4	1.4090	0.0150	IP	1.8680	0.00277	OS	1.6837	0.1700
Cs	3.3950	0.0000806	H5	1.3590	0.0150	K	2.6580	0.000328	OW	1.7683	0.1520
CT	1.9080	0.1094	HA	1.4590	0.0150	Li	1.1370	0.0183	Р	2.1000	0.2000
F	1.75	0.061	HC	1.4870	0.0157	N^m	1.8240	0.1700	Rb	2.9560	0.00017
н	0.6000	0.0157	HO	0.0000	0.0000	N3 ⁿ	1.875	0.1700	S	2.0000	0.2500
H1	1.3870	0.0157	HP	1.1000	0.0157	0	1.6612	0.2100	SH	2.0000	0.2500

Molecular Mechanical Force Field Parameterization *For* **Biomolecules**

Torsional Angle Parameterization

$$V_{potential} = \sum_{bonds} K_r (r - r_{eq})^2 + \sum_{angles} K_\theta (\theta - \theta_{eq})^2 + \sum_{dihedrals} \frac{V_n}{2} [1 + \cos(\theta - \gamma)] + \sum_{i < j} \left\{ \left[\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^6} \right] + \frac{q_i q_j}{\varepsilon R_{ij}} \right\}$$

C-

N-

10 GA runs with an internal paralleled GA to reproduce LMP2/ccpvtz(-f) energies of dipeptides

	Model	1		Model 2				
	Fourier (n)	V _n /2	Phase angle	Fourier	V _n /2 (n)	Phase angle		
N-CT-C	1	0.748	0	1	0.552	0		
	2	0.719	0	2	0.662	0		
	3	0.199	0	3	0.316	0		
CT-C-N	1	0.319	0	1	0.109	0		
	2	1.194	180	2	1.184	180		
	3	0.013	0	3	0.000	0		

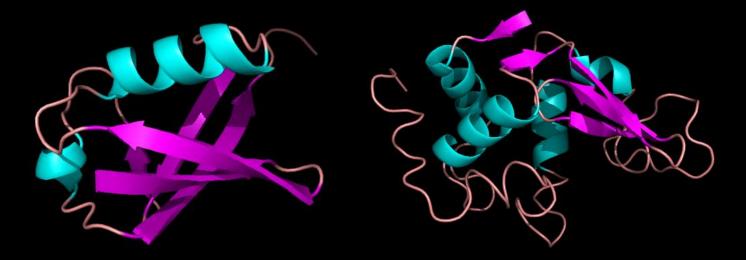
How Well Do AMBER FF Reproduce QM Energies

	FF94	FF96	FF99	FF99SB	FF03	M1	M2
ALA	0.79	0.82	0.77	0.72	0.82	0.86	0.87
ARG	0.80	0.80	0.81	0.75	0.81	0.81	0.82
ASN	0.68	0.77	0.65	0.64	0.75	0.79	0.79
ASP	0.79	0.73	0.81	0.76	0.78	0.77	0.78
CYS	0.74	0.78	0.71	0.72	0.67	0.79	0.80
GLN	0.73	0.81	0.70	0.69	0.80	0.83	0.83
GLU	0.76	0.80	0.73	0.69	0.82	0.80	0.80
GLY	0.81	0.80	0.75	0.85	0.87	0.86	0.87
HIS	0.72	0.83	0.66	0.68	0.62	0.84	0.85
ILE	0.86	0.88	0.84	0.83	0.80	0.89	0.90
LEU	0.82	0.87	0.78	0.80	0.84	0.88	0.89
LYS	0.93	0.94	0.91	0.91	0.88	0.95	0.95

QM: LMP2/cc-pVTZ (-f), 20 ϕ - ψ maps

How Well Do AMBER FF Reproduce QM Energies - Continued

	FF94	FF96	FF99	FF99SB	FF03	Model1	Model2
MET	0.81	0.86	0.78	0.79	0.82	0.88	0.88
PHE	0.77	0.81	0.75	0.72	0.81	0.83	0.84
PRO	0.89	0.89	0.91	0.90	0.89	0.90	0.90
SER	0.78	0.81	0.74	0.78	0.77	0.83	0.83
THR	0.73	0.77	0.67	0.68	0.74	0.78	0.78
TRP	0.76	0.81	0.75	0.72	0.77	0.80	0.81
TYR	0.69	0.75	0.63	0.68	0.56	0.73	0.74
VAL	0.87	0.88	0.85	0.85	0.76	0.88	0.89
AUE	2.23	2.11	2.48	2.67	2.34	2.01	1.99
RMSE	2.94	2.78	3.18	3.44	3.05	2.68	2.65
<mark>.</mark> 2	0.79	0.81	0.77	0.76	0.78	0.83	0.84



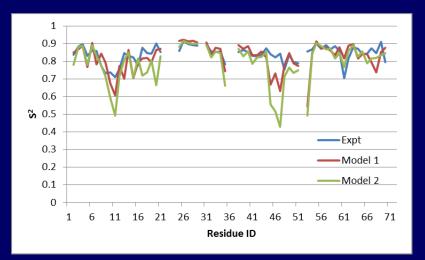
Evaluation of Force Field Models

- 1. NMR order parameters S²
- 2. Protein folding
- 3. J-couplings of small peptides
- 4. Decoy analysis

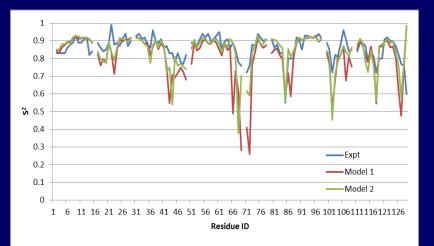
S² Prediction – Measure Amide N-H Vibrational Motion

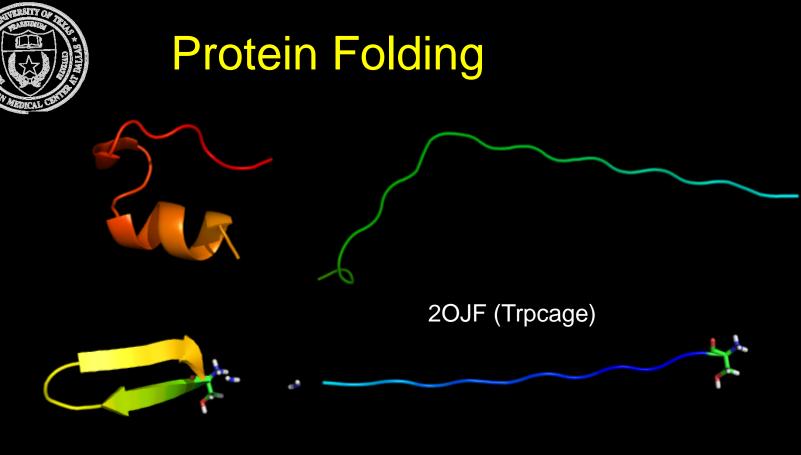
1UBQ

6LYT – hen egg white lysozyme


- 25 nano second MD simulations
- Autocorrelation function was calculated up to 4ns (the mean of the second half was taken as S²)
- Experimental data

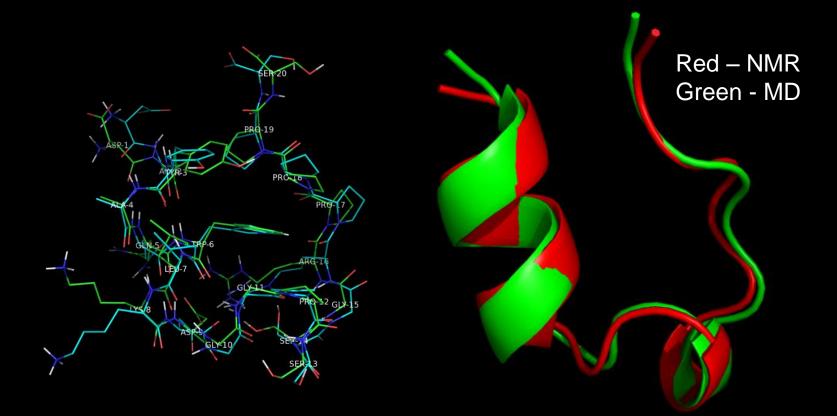
Ubiquitin: JACS, 117, 12562; lysozyme: Biochemistry, 34, 4041




Backbone RMSD Plot And Order Parameter S² of 1UBQ And 6YLT

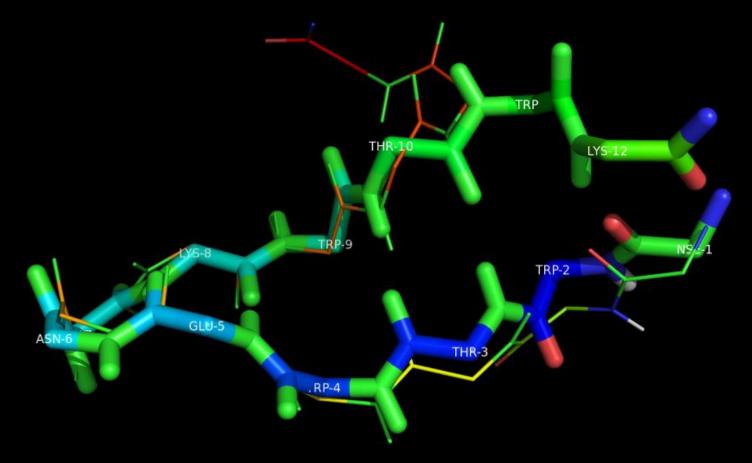
ubiquitin

Lysozyme



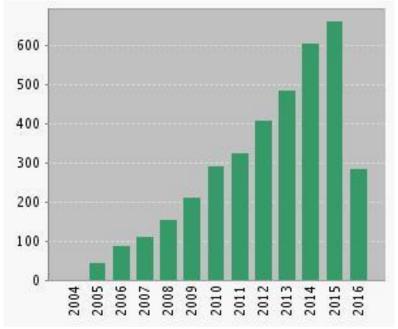
1LE1 (tryptophan zipper 2)

- 1. Starting from fully extended conformation
- 2. GBMD at 298 K


Comparison of the "Best" MD And NMR Structures for Trpcage

The MD structure was obtained with Model 2, main chain RMSD is 0.80 Å Simmerling et al's folding achieved an RMSD of 1.1 Å (JACS, 124, 11258-11259)

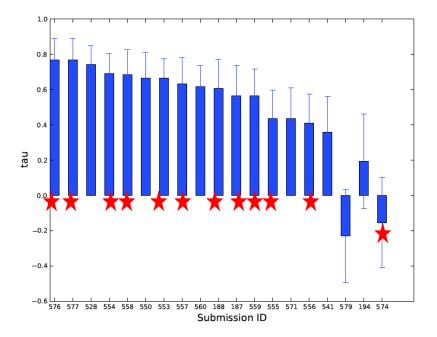
Comparison of the "Best" MD And NMR Structures of Tryptophan Zipper 2



The MD structure was obtained with Model 2, main chain RMSD is 0.79 Å

Molecular Mechanical Force Field Parameterization For Organic / Drug Molecules

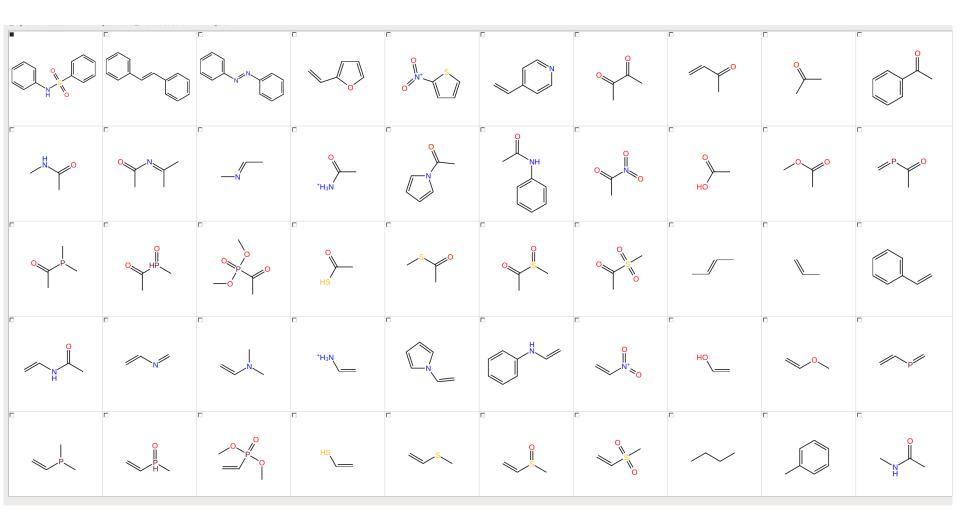
GAFF – A Successful, Widely Used MMFF


Citations in Each Year *

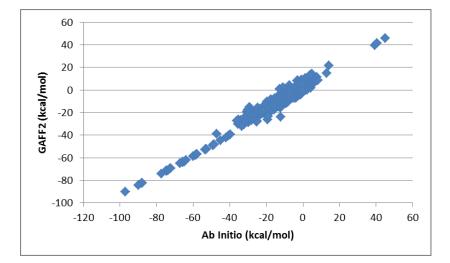
* webofknowledge.com


** Courtesy: Wei Yang, FSU

SAMPL4 Host-Guest Challenge **

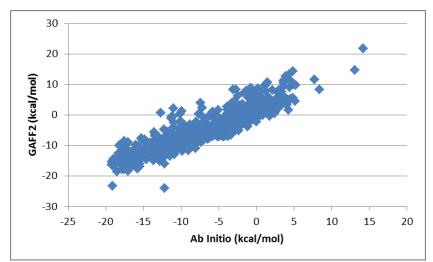

Correlation Coefficients Between the Expt. and Predicted Binding Free Energies of 23 Guest molecules of Cucurbit Uril and Octaacid

GAFF was used in 14 out of 21 submissions.

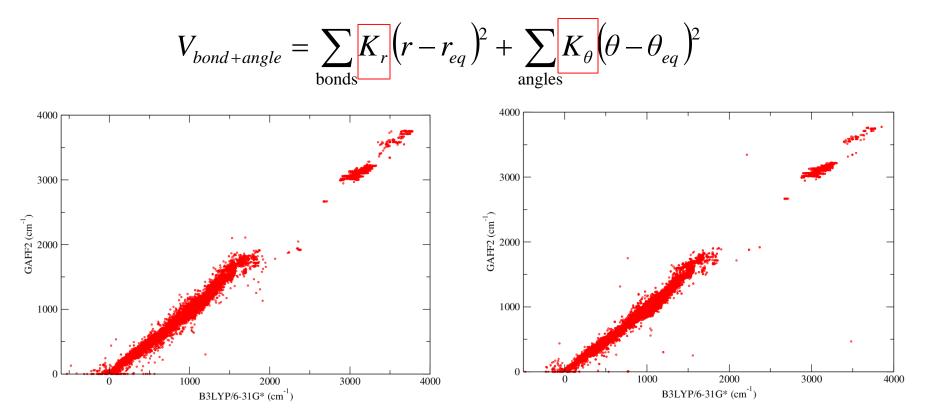


- 1. Basic version released with AMBER16 10 basic elements
- 2. Extended version released before September 2016 Other nonmetallic atom types
- 3. Full version in 2017 Metallic elements

Diversity of Model Compounds For Torsional Angle Parameterization


Performance of GAFF2 in Reproducing Ab Initio Interaction Energies

AUE = 1.10 kcal/mol RMSE = 2.11 kcal/mol **ASE = -0.80** kcal/mol Number of data points: 2954


AUE: Average unsigned error RMSE: root-mean-squared error ASE: average signed error

Excluding Charged molecules

AUE = 0.97 kcal/mol RMSE = 1.84 kcal/mol ASE = -0.68 kcal/mol Number of data points: 2834

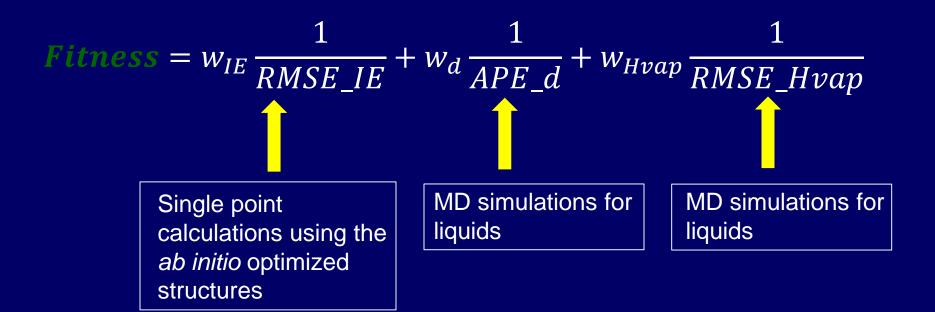
Bond Stretching And Bending Force Constants

Training Set

#data : 22407 GAFF2: AUE: 51.4, RMSE: 67.2 cm⁻¹ GAFF : AUE: 88.4, RMSE: 122.9 cm⁻¹ **Test Set**

#data : 29003 GAFF2: AUE: 48.4, RMSE: 63.0 cm⁻¹ GAFF : AUE: 88.0, RMSE: 123.3 cm⁻¹

Strategies of GAFF2 Parameterization

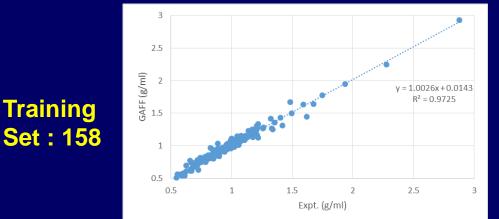

1. Partial Charge

2. van der Waals

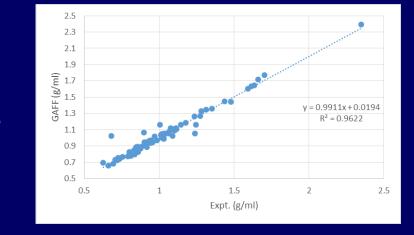
- Reproduce bulk properties, such as density and heat of vaporization
- Reproduce high level interaction energies at MP2/aug-cc-pVTZ or above levels
- 3. Bond length and bond angle parameters
- 4. Torsional angle parameters

Objective Function

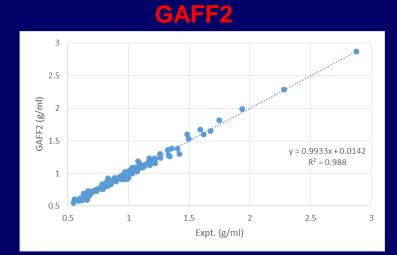
- Genetic algorithm is applied to optimize the r and ε to maximize Fitness
- Total fitness function calls: 200000 to 1 million



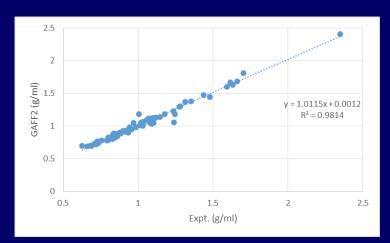
Training


Liquid Densities

GAFF



APE = 4.17%, RMSAPE = 5.56%

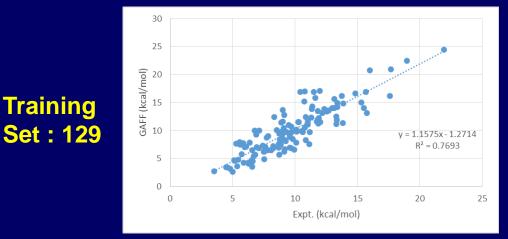


APE = 3.28%, RMSAPE = 6.92%

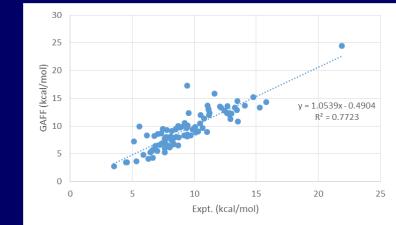
APE = **2.51** %, RMSAPE = 3.43%

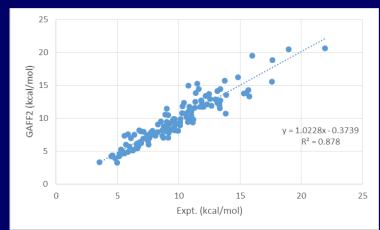
APE = **2.72**%, RMSAPE = 3.93%

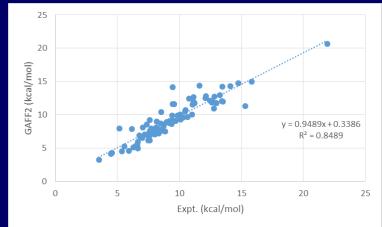
Training


Test

Set : 89


Heat of Vaporization


GAFF



AUE = 1.69, RMSE = 2.13 kcal/mol

AUE = 0.97, RMSE = 1.11 kcal/mol

AUE = 1.28, RMSE = 1.67 kcal/mol AUE = 0.86, RMSE = 1.18 kcal/mol

Polarizable Molecular Mechanical Force Field

Limitation of additive force fields

The use of Coulomb's law with fixed atomic charges to treat the electrostatic interactions is a major simplification in current force fields.

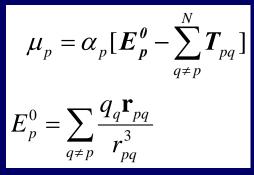
It is well known that the electron distribution of a molecule (and, thus, the atomic charges) changes as a function of the electrostatic field around the molecule. This is ignored in additive force fields.

To compensate for this omission, the atomic charges are "enhanced" to mimic the polarization of molecules that occurs in a polar, condensed phase environment (e.g. aqueous solution, TIP3P water model dipole moment = 2.35 versus gas phase value of 1.85).

Polarizable Force Field Development

1. Dipole Interaction – Based Polarizable Force Field

- Describe electrostatic interaction in a more physical fashion
- Suitable to study heterogeneous systems, dielectric continually changed system, highly charged systems.


$$\begin{split} V_{potential} &= \sum_{\text{bonds}} K_r \left(r - r_{eq} \right)^2 + \sum_{\text{angles}} K_\theta \left(\theta - \theta_{eq} \right)^2 + \sum_{\text{dihedrals}} \frac{V_n}{2} \left[1 + \cos(n\varphi - \gamma) \right] + \\ &\sum_{\substack{i < j \\ \text{van der Waals}}} \left(\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^6} \right) + \sum_{\substack{i < j \\ \text{electrostatic}}} \frac{q_i q_j}{R_{ij}} \right. + V_{pol} \end{split}$$

Dipole Interaction Models – Thole Scheme

$$V_{\rm pol} = -1/2 \sum_p \mu_p E_p^{0}$$

Dipole interaction model

Dipole field tensor

$$\boldsymbol{T}_{pq} = \frac{f_e}{r_{pq}^3} \boldsymbol{I} - \frac{3f_t}{r_{pq}^5} \begin{bmatrix} x^2 & xy & xz \\ yx & y^2 & yz \\ zx & zy & z_2 \end{bmatrix}$$

Linear

$$v = r_{pq} / [a(\alpha_p \alpha_q)^{1/6}]$$

if (v >= 1) $f_e = 1.0, f_t = 1.0$
if (v < 1) $f_e = 4v^3 - 3v^4, f_t = v^4$

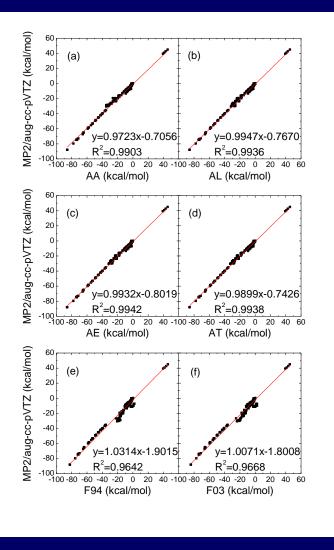
Exponential

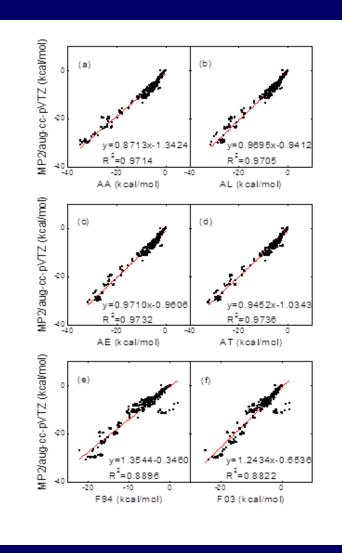
$$v = r_{pq} / \left[a(\alpha_p \alpha_q)^{1/6} \right]$$

$$f_e = 1 - \left(\frac{v^2}{2} + v + 1 \right) \exp(-v)$$

$$f_t = 1 - \left(\frac{1}{6} v^3 + \frac{1}{2} v^2 + v + 1 \right) \exp(-v)$$

Amoeba-like


$$v = r_{pq} / [a(\alpha_p \alpha_q)^{1/6}]$$


$$f_e = 1 - \exp(-v^3)$$

$$f_t = 1 - (v^3 + 1)\exp(-v^3)$$

Comparison of Polarizable and Additive Force Fields

Linear: AUE = 1.02, RMSE = 1.56, Amoeba-like: AUE=1.05, RMSE=1.66 ₉₁ *J. Phys. Chem. B*, 115, 3091-3099, **2011**; J. Phys. Chem. B, 115, 3100-3111