
1

Lecture 3: Quantum Mechanics

Junmei Wang

Department of Pharmacology, University of Texas 

Southwestern Medical Center at Dallas

Junmei.wang@utsouthwestern.edu



2

Project 1: Drug Lead Identification

1. Select a protein system

2. Perform 2D-similarity search

• Download a sdf file of the ligand from RCSB Protein Databank

(http://www.rcsb.org/pdb/home/home.do)

• Similarity searches with OpenBabel

3. Prepare necessary files for molecular docking with AutoDock vina

• Ligand.pdbqt

• Receptor.pdbqt

• Configure.txt

Protein Class PDB Code -logkd Resolution

Neuraminidase 2QWG 8.4 1.8

DHFR 1DHF 7.4 2.3

L-arabinose 1ABE 6.52 1.7

Thrombin 1A5G 10.15 2.06

Human oxresin receptor 1 4ZJ8 ~10 2.75

http://www.rcsb.org/pdb/home/home.do
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Project 1: Drug Lead Identification-

Continued

4. Docking screening 

• Submit jobs from BioHPC

Login: ssh –Y jwang@nucleus.biohpc.swmed.edu

sftp jwang@nucleus.biohpc.swmed.edu

5. Analyze docking results 

• Prioritize compounds based on docking scores

• Examine docking poses with PyMOL

6. Write report 

• Hit rate (HR)

• Enrichment factor (EF)

• Enrichment curve

mailto:jwang@nucleus.biohpc.swmed.edu
mailto:jwang@nucleus.biohpc.swmed.edu


Lead Identification Through Virtual Screening 
Using A Set of Hierarchical Filters 
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Enrichment Curves
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Stouten Pairwise Atomic

Solvation Parameters
Favorable for C, A ; Unfavorable for O, N

Proportional to the absolute value of partial charges
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Performance of Two Scoring Functions

AutoDock AutoDock Vina

AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring 

Function, Efficient Optimization, and Multithreading, J. Comput. Chem., 31, 455-461, 2009



Introduction to Computational 

Quantum Chemistry



Quantum Mechanics

 Quantum Mechanics: Ĥ = E 

The Solvay Conference 1927 



Quantum Mechanics

Walter Kohn John Pople

Nobel Prize of Chemistry Winner  1998 

The 1998 Nobel Prize in Chemistry was awarded to Walter Kohn “for his

development of the density functional theory” and John Pople “for his 

development of computational methods in quantum chemistry”.



What’s it Good For?

• Computational quantum chemistry is a rapidly growing field in 

chemistry.

– Computers are getting faster.

– Algorithims and programs are maturing.

• Some of the almost limitless properties that can be calculated 

with computational chemistry are:

– Equilibrium and transition-state structures

– dipole and quadrapole moments and polarizabilities

– Vibrational frequencies, IR and Raman Spectra

– NMR spectra

– Electronic excitations and UV spectra

– Reaction rates and cross sections

– thermochemical data



Motivation

• Schrödinger Equation can only be solved exactly for simple 

systems.

– Rigid Rotor, Harmonic Oscillator, Particle in a Box, Hydrogen Atom

• For more complex systems (i.e. many electron atoms/molecules) 

we need to make some simplifying assumptions/approximations 

and solve it numerically.

• However, it is still possible to get very accurate results (and also 

get very crummy results).

– In general, the “cost” of the calculation increases with the accuracy of the 

calculation and the size of the system.



Getting into the theory...

• Three parts to solving the Schrödinger equation for 

molecules:

– Born-Oppenheimer Approximation

• Leads to the idea of a potential energy surface

– The expansion of the many-electron wave function in terms of 

Slater determinants.

• Often called the “Method”

– Representation of Slater determinants by molecular orbitals, which 

are linear combinations of atomic-like-orbital functions.

• The basis set



The Born-Oppenheimer Approximation



Time Independent Schrödinger Equation

• We’ll be solving the Time-Independent Schrödinger Equation
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Hydrogen-Like Atom

Schrodinger equation and solution of hydrogen-like atoms

https://en.wikipedia.org/wiki/Hydrogen-like_atom


The Born-Oppenheimer Approximation

• The wave-function of the many-electron molecule is a 

function of electron and nuclear coordinates: (R,r) 

(R=nuclear coords, r=electron coords).

• The motions of the electrons and nuclei are coupled.

• However, the nuclei are much heavier than the electrons

– mp ≈ 2000 me

• And consequently nuclei move much more slowly than 

do the electrons (E=1/2mv2).  To the electrons the nuclei 

appear fixed.

• Born-Oppenheimer Approximation:  to a high degree of 

accuracy we can separate electron and nuclear motion:

(R,r)= el(r;R) N(R)
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Electronic Schrödinger Equation

• Now we can solve the electronic part of the Schrödinger 

equation separately.

• BO approximation leads

to the idea of a potential

energy surface.
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Nuclear Schrödinger Equation

• Once we have the Potential Energy Surface (PES) we can 
solve the nuclear Schrödinger equation.

• Solution of the nuclear SE

allow us to determine a large

variety of molecular properties.

An example are vibrational

energy levels. 
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Polyatomic Potential Energy Surfaces
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• We can only look at cuts/slices

• 3n-6 degrees of freedom

• Minima and Transition states

• Minimum energy path

• Like following a stream-bed

O + HCl  OH + Cl



The Method



So how do we solve Electronic S.E.?

• For systems involving more than 1 electron, still isn’t 

possible to solve it exactly.

– The electron-electron interaction is the culprit
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Approximating :  The Method

• After the B-O approximation, the next important 
approximation is the expansion of  in a basis of Slater 
determinants:

• Slater Determinant:

– / are spin-functions (spin-up/spin-down)

– i are spatial functions (molecular orbitals

– i  and i  are called spin-orbitals

– Slater determinant gives proper anti-symmetry (Pauli Principle) 
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Hartree-Fock Approximation

• Think of Slater determinants as configurations.

– Ex:  Neon:

• Ground-state electron configuration 1s22s22p6 this would be 0

• 1 might be 1s22s22p53s1

• If we had a complete set of i’s the expansion would be 
exact (not feasible).

• Hartree-Fock (HF) Approximation:  Use 1 determinant, 
0.

– A variational method (energy for approximate  will always be 
higher than energy of the true )

– Uses self-consistent field (SCF) procedure

– Finds the optimal set of molecular orbitals for 0

– Each electron only sees average repulsion of the remaining 
electrons (no instantaneous interactions).



Accuracy of Hartree-Fock Calculations

• Hartree-Fock wavefunctions typically recover ~99% of the total electronic energy.

– total energy of O-atom ≈ -75.00 Eh (1 Hartree= 1 Eh = 2625.5 kJ/mol).

– 1 % of total energy is 0.7500 Eh or ~1969 kJ/mol

– With more electrons this gets worse.  Total energy of S atom ≈ -472.88 Eh (1% of 

energy is 12415 kJ/mol)

• Fortunately for the Hartree-Fock method (and all Quantum Chemists) chemistry is 

primarily interested in energy differences, not total energies.  Hartree-Fock

calculations usually provide at least qualitative accuracy in this respect.

– Bond lengths, bond angles, vibrational force constants, thermochemistry, ... can 

generally be predicted qualitatively with HF theory.

Re (Å) e (cm-1) De (KJ/mol)

HF/cc-pV6Z 1.10 2427 185

Experiment 1.13 2170 260

% Error 2.7% 11.8% 28.8%

Spectroscopic Constants of CO (Total Ee≈-300,000 kJ/mol)



Electron Correlation

• Electron Correlation:  Difference between energy calculated with exact 

wave-function and energy from using Hartree-Fock wavefunction.

Ecorr = Eexact - EHF

• Accounts for the neglect of instantaneous electron-electron interactions of 

Hartree-Fock method.

• In general, we get correlation energy by adding additional Slater 

determinants to our expansion of .

• Hartree-Fock wavefunction is often used as our starting point.

• Additional Slater determinants are often called “excited.”

– Mental picture of orbitals and electron configurations must be abandoned.

• Different correlation methods differ in how they choose which i to include 

and in how they calculate the coefficients, di.



 el  d0HF  dii

i1
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Configuration Interaction

• Write  as a linear combination of Slater Determinants and calculate 
the expansion coefficients such that the energy is minimized.

• Linear variational principle:  no matter what wave function is used, the 
energy is always equal to or greater than the true energy.

• If we include all excited i we will have a full-CI, and an exact 
solution for the given basis set we are using.

• Full-CI calculations are generally not computationally feasible, so we 
must truncate the number of i in some way.

• CISD:  Configuration interaction with single- and double-excitations.

– Include all determinants of S- and D- type.

• MRCI:  Multi-reference configuration interaction

• CI methods can be very accurate, but require long (and therefore 
expensive) expansions.

– hundreds of thousands, millions, or more



 el  d0HF  dii
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Møller-Plesset Perturbation Theory

• Perturbation methods, like Møller-Plesset (MP) 

perturbation theory, assume that the problem we’d like to 

solve (correlated  and E) differ only slightly from a 

problem we’ve already solved (HF  and E).

• The energy is calculated to various orders of 

approximation.

– Second order MP2; Third order MP3; Fourth order MP4...

– Computational cost increases strongly with each successive order.

– At infinite order the energy should be equal to the exact solution of 

the S.E. (for the given basis set).  However, there is no guarantee 

the series is actually convergent.

– In general only MP2 is recommended

• MP2 ~ including all single and double excitations



Coupled Cluster (CC) Theory

• An exponential operator is used in constructing the 

expansion of determinants.

• Leads to accurate and compact wave function expansions 

yielding accurate electronic energies.

• Common Variants:

– CCSD:  singles and doubles CC

– CCSD(T):  CCSD with approximate treatment of triple excitations.  

This method, when used with large basis sets, can generally 

provide highly accurate results.  With this method, it is often 

possible to get thermochemistry within chemical accuracy, 1 

kcal/mol (4.184 kJ/mol)



Frozen Core Approximation

• In general, only the valence orbitals are involved in 

chemical bonding.

• The core orbitals don’t change much when atoms are 

involved in molecules than when the atoms are free.

• So, most electronic structure calculations only correlate the 

valence electrons.  The core orbitals are kept frozen.

– i.e., 2s and 2p electrons of Oxygen would be correlated, and the 1s

electrons would not be correlated.



Density Functional Theory

• The methods we’ve been discussing can be grouped 

together under the heading “Wave function methods.”

– They all calculate energies/properties by calculating/improving 

upon the wave function.

• Density Functional Theory (DFT) instead solves for the 

electron density.

– Generally computational cost is similar to the cost of HF 

calculations.

– Most DFT methods involve some empirical parameterization.

– Generally lacks the systematics that characterize wave function 

methods.

– Often the best choice when dealing with very large molecules 

(proteins, large organic molecules...)



Basis Set



Basis Set Approximation:  LCAO-MO

• Slater determinants are built from molecular orbitals, but how do 
we define these orbitals?

• We do another expansion:  Linear Combination of Atomic 
Orbitals-Molecular Orbitals (LCAO-MO)

– Molecular orbital coefs, cki, determined in SCF procedure

– The basis functions, i, are atom-centered functions that mimic solutions of 
the H-atom (s orbitals, p orbitals,...)

• The larger the expansion the more accurate and expensive the 
calculations become.
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Gaussian Type Orbitals

• The radial dependence of the H-atom solutions are Slater type 
functions:

• Most electronic structure theory calculations (what we’ve been talking 
about) use Gaussian type functions because they are computationally 
much more efficient.

• lx + ly + lz = l and determines type of orbitals (l=1 is a p...)

• ’s can be single Gaussian functions (primitives) or themselves be 
linear combinations of Gaussian functions (contracted).
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Pople-style basis sets

• Named for Prof. John Pople who won the Nobel Prize in Chemistry for 

his work in quantum chemistry (1998).

• Notation: 6-31G
Use 6 primitives

contracted to a single

contracted-Gaussian

to describe inner (core)

electrons (1s in C)

Use 2 functions to

describe valence orbitals (2s, 2p in C).

One is a contracted-Gaussian

composed of 3 primitives,

the second is a single primitive.

6-311G Use 3 functions to describe valence orbitals...

6-31G* Add functions of ang. momentum type 1 greater than 

occupied in bonding atoms (For N we’d add a d)

6-31G(d) Same as 6-31G* for 2nd and 3rd row atoms



Correlation-Consistent Basis Sets

• Designed such that they have the unique property of forming a 

systematically convergent set.

• Calculations with a series of correlation consistent (cc) basis sets can 

lead to accurate estimates of the Complete Basis Set (CBS) limit.

• Notation:  cc-pVnZ

– correlation consistent polarized valence n-zeta

• n = D, T, Q, 5,... (double, triple, quadruple, quintuple, ...)

– double zeta-use 2 Gaussians to describe valence orbitals; triple zeta-use 3 

Gaussians...

– aug-cc-pVnZ:  add an extra diffuse function of each angular momentum 

type

• Relation between Pople and cc basis sets

– cc-pVDZ ≈ 6-31G(d,p)

– cc-pVTZ ≈ 6-311G(2df,2pd)
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Exact Solution
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Computational Cost

• Why not use best available correlation method with the 

largest available basis set?

– A MP2 calculation would be 100x more expensive than HF 

calculation with same basis set.

– A CCSD(T) calculation would be 104x more expensive than HF 

calculation with same basis set.

– Tripling basis set size would increase MP2 calculation 243x (35).

– Increasing the molecule size 2x (say ethanebutane) would 

increase a CCSD(T) calculation 128x (27).

Method Scaling o f Cost

HF M
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MP2 M
5

CCSD M
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High accuracy possible 

Molecule CBS De EZPVE ECV ESR Atomic

SO

Theoretical

D0 (0K)

Experimental

D0 (0K)

NH2 (
2B1) 181.8 -12.0 0.4 -0.2 0.0 170.0 170.00.3

H3CSH (1A) 473.5 -28.6 1.5 -0.6 -0.6 445.2 445.1

SO2 (
1A1) 257.6 -3.9 1.0 -0.9 -1.0 253.7 254.00.2

Na2 (
1g

+) 16.8 -0.2 0.3 0.0 0.0 16.9 16.80.3

BrCl (1+) 56.6 -0.6 0.4 -0.4 -4.4 51.6 51.50.3

CH3I (
1+) 372.3 -22.4 3.7 -0.9 -7.3 345.4 344.80.3

Si2H6 (
1A1g) 536.1 -30.5 0.0 -1.1 -0.9 503.6 500.1

• Despite all these approximations highly accurate results are 

still possible.

CCSD(T) Atomization Energies for Various Molecules

Atomization energies are notoriously difficult to calculate.

EZPVE: Zero-point energy correction

ECV: core/valence correlation 

ESR: molecular/atomic scalar relativistic correlation 

ESO: atomic spin-orbit scalar relativistic correlation



Applications
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Materials Science Applications

Potential photo-switch

• A photo-switch is a sensor 

that detects the presence or 

change of light. 

• Photo switches are one type 

of molecular machines, a 

class of molecules that can 

be switched between at 

least two distinct 

thermodynamically stable 

forms by the application of 

an external stimulus. 

• Development of such 

devices is crucial in the 

framework of the field of 

nanotechnology
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Biochemistry applications
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Get your paper and pencil ready...

• There exist a large number of software packages capable of 

performing electronic structure calculations.

– MOLPRO, GAMESS, COLUMBUS, NWCHEM, MOLFDIR, 

ACESII, GAUSSIAN, ...

– The different programs have various advantages and capabilities.

• In this class we will be using the Gaussian program 

package.

– Broad capabilities

– Relatively easy for non-experts to get started with

– Probably most widely used

• Gaussview, which is a GUI that interfaces with Gaussian, 

can be applied in building molecules and viewing output.



Caution!

• Different choices of methods and basis sets can yield a 

large variation in results.

• It is important to know the errors associated with and 

limitations of different computational approaches.

• This is important when doing your own calculations, and 

when evaluating the calculations of others.

• Don’t just accept the numbers the computer spits out at 

face value!



Conclusion

• Born-Oppenheimer Approximation

– Separate electronic motion from nuclear motion and solve the 

electronic and nuclear S.E. separately.

• Expansion of the many electron wave function:  “The 

Method”

– Represent wave function as linear combination of Slater 

determinants.

– More Slater determinants (in principle) yield more accurate results, 

but more expensive calculations.

• Expansion of molecular orbitals:  “The Basis Set”


